首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Torpedo nicotinic acetylcholine receptor (AChR) contains a binding site for aromatic amine noncompetitive antagonists that is distinct from the binding site for agonists and competitive antagonists. To characterize the location and function of this allosteric antagonist site, an alkylating analog of meproadifen has been synthesized, 2-(chloroethylmethylamino)-ethyl-2, 2-diphenylpentanoate HCl (meproadifen mustard). Reaction of [3H]meproadifen mustard with AChR-rich membrane suspensions resulted in specific incorporation of label predominantly into the AChR alpha-subunit with minor incorporation into the beta-subunit. Specific labeling required the presence of high concentration of agonist and was inhibited by reversible noncompetitive antagonists including proadifen, meproadifen, perhydrohistrionicotoxin (HTX), and tetracaine when present at concentrations consistent with the binding affinity of these compounds for the allosteric antagonist site. No specific alkylation of the AChR alpha-subunit was detected in the absence of agonist, or in the presence of the partial agonist phenyltrimethylammonium or the competitive antagonists, d-tubocurarine, gallamine triethiodide, or decamethonium. Reaction with 35 microM meproadifen mustard for 70 min in the presence of carbamylcholine produced no alteration in the concentration of [3H]ACh-binding sites, but decreased by 38 +/- 4% the number of allosteric antagonist sites as measured by [3H]HTX binding. This decrease was not observed when the alkylation reaction was blocked by the presence of HTX. These results lead us to conclude that meproadifen mustard alkylates the allosteric antagonist site in the Torpedo AChR and that part of that site is associated with the AChR alpha-subunit.  相似文献   

2.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

3.
Thirteen monoclonal antibodies (mAb) to the acetylcholine receptor (AChR) from Torpedo marmorata showed high avidity for the receptor but none exhibited binding to muscle AChR solubilised from seven other animal species. Five mAb and Fab monomer fragments prepared from two of them, inhibited alpha-bungarotoxin (alpha BuTx) binding to receptor by a maximum of 50%. In the presence of excess mAb the 125I-alpha BuTx bound could be precipitated by anti-IgG indicating that the mAb bound to only one of the two alpha BuTx binding sites on each AChR monomer. This site appeared to have a lower affinity for d-tubocurarine and decamethonium than the non-mAb site. Binding of five anti-site mAb was mutually competitive and four of them (AS2-AS5) were inhibited by other cholinergic ligands and influenced by four non-toxin binding site antibodies. One (AS1) bound within the toxin binding site yet outside the main neurotransmitter binding region. It is concluded that these five mAb distinguish between the two alpha BuTx binding sites on the Torpedo AChR, and bind only to the site which displays lower affinity for d-tubocurarine and other competitive ligands.  相似文献   

4.
Synthetic peptides corresponding to 57% of the sequence of alpha subunits of acetylcholine receptors from Torpedo californica electric organ and extending from the NH2 to the COOCH terminus have been synthesized. The alpha-bungarotoxin binding site on denatured alpha subunits was mapped within the sequence alpha 185-199 by assaying binding of 125I-alpha-bungarotoxin to slot blots of synthetic peptides. Further studies showed that residues in the sequence alpha 190-194, especially cysteines-alpha 192, 193, were critical for binding alpha-bungarotoxin. Reduction and alkylation studies suggested that these cysteines must be disulfide linked for alpha-bungarotoxin to bind. Binding sites for serum antibodies to native receptors or alpha subunits were mapped by indirect immunoprecipitation of 125I-peptides. Several antigenic sequences were identified, but a synthetic peptide corresponding to the main immunogenic region (which is highly conformation dependent) was not identified.  相似文献   

5.
The stability of nicotinic acetylcholine receptors (AChR) solubilized from mammalian skeletal muscle in nonionic detergent was investigated under various conditions of pH, chaotropic ions, and unfolding reagents in order to allow its purification in high yield by immunoadsorption to monoclonal antibodies. Preservation of the antigenicity and/or binding sites for alpha-bungarotoxin was used as an indicator of the receptor protein's integrity. Both were preserved in the pH range 6.5-8.0, but when exposed for 1 h at 4 degrees C to a pH outside this range, greater than 50% activity was lost. Of the chaotropic ions studied (NaSCN, NaI, NaNO3, NaCl), only NaCl was tolerated. Most of the AChR's toxin-binding activity was preserved after exposure to 2 M NaCl, which was suitable for dissociating AChR when a monoclonal antibody with relatively low binding affinity was selected as the immunoadsorbent. Yields of purified AChR were optimal (30%) when a low amount of monoclonal antibody was coupled to cyanogen bromide-activated agarose (1 mg protein/ml gel).  相似文献   

6.
We have studied alkylation of the membrane-bound acetylcholine receptor (AcChR) from Torpedo californica electric organ by the cholinergic agonist bromo-acetylcholine (BrAcCh). Following reduction of the AcChR with dithiothreitol (DTT) under strictly controlled conditions, a single class of binding sites was covalently labeled by BrAcCh. The extent of alkylation was dependent on the concentration of both DTT and BrAcCh and reached a maximum when a number of sites equivalent to the number of alpha-bungarotoxin (alpha-BTx) binding sites were labeled. The reaction with BrAcCh was completely inhibited by saturating concentrations of alpha-BTx. On the contrary, complete alkylation of the AcChR with [3H]BrAcCh consistently inhibited only approximately 50% of alpha-BTx binding. The effects of DTT reduction and subsequent BrAcCh alkylation on the cation-gating properties of the AcChR were investigated in rapid kinetic experiments. DTT reduction resulted in a slight decrease in the maximum cation flux and a small shift in the effective dissociation constant to higher acetylcholine (AcCh) concentration. The flux response was completely inhibited by maximal alkylation of the membrane vesicles by BrAcCh. A low-affinity binding site for AcCh, which is likely to be important in AcChR activation, has been revealed for T. californica AcChR by studying the effects of cholinergic ligands on the fluorescence of a probe, 4-[(iodoacetoxy)ethylmethylamino]-7-nitro-2,1,3-benzoxadiazole (IANBD), covalently bound to the AcChR protein. Maximal labeling by BrAcCh did not affect the binding of AcCh to the low-affinity binding site, as monitored by changes in the fluorescence of this probe. This low-affinity binding site must therefore be distinct from the site labeled by BrAcCh. The results strongly support the notion that the nicotinic AcChR contains multiple binding sites for cholinergic ligands.  相似文献   

7.
To characterize the structure of the agonist-binding site of the Torpedo nicotinic acetylcholine receptor (AChR), we have used [3H]acetylcholine mustard [( 3H]AChM), a reactive analog of acetylcholine, to identify residues contributing to the cation-binding subsite. Reaction of [3H]AChM, in its aziridinium form, with AChR-rich membrane suspensions, resulted initially in reversible, high affinity binding (K approximately 0.3 microM) followed by slow alkylation of the acetylcholine-binding site. Incorporation of label into AChR alpha-subunit was inhibited by agonists and competitive antagonists, but not by noncompetitive antagonists, and reaction with 3 microM [3H]AChM for 2 h resulted in specific alkylation of 0.6% of alpha-subunits. Within the alpha-subunit, greater than 90% of specific incorporation was contained within an 18-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Val-46 and containing N-linked carbohydrate. To identify sites of specific alkylation, [3H]AChM-labeled alpha-subunit was digested with trypsin, and the digests were fractionated by reverse phase high pressure liquid chromatography. Specifically labeled material was recovered within a single peak containing a peptide extending from Leu-80 to Lys-107. NH2-terminal amino acid sequencing revealed specific release of 3H in cycle 14 corresponding to alpha-subunit Tyr-93. Identification of Tyr-93 as the site of alkylation was confirmed by radiosequence analysis utilizing o-phthalaldehyde to establish that the released 3H originated from a peptide containing prolines at residues 2 and 9. Because [3H]AChM contains as its reactive group a positively charged quaternary aziridinium, alpha-subunit Tyr-93 is identified as contributing to the cation-binding domain of the AChR agonist-binding site. The selective reaction of [3H]AChM with tyrosyl rather than acidic side chains indicates the importance of aromatic interactions for the binding of the quaternary ammonium group, and the lack of reaction with the tyrosyl or acidic side chains within alpha 190-200 emphasizes the selective orientation of acetylcholine within its binding site.  相似文献   

8.
The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible.  相似文献   

9.
Intact nicotinic acetylcholine receptor (AChR) tightly binds alpha-bungarotoxin. The two toxin-binding sites are presumed to be on the two alpha-subunits, either on or near the ACh-binding sites. Isolated alpha-subunits have been found to maintain weak binding to alpha-bungarotoxin (KD approximately 0.2 microM). We describe here conditions under which the alpha-subunit and a 27,000-dalton proteolytic peptide bound alpha-bungarotoxin with high affinity. The four subunits of Torpedo marmorata AChR, as well as several proteolytic peptides of the alpha-subunit, were first purified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. We found that the purified alpha-subunit (but not the beta-, gamma- or delta-subunits) and its 27,000-dalton peptide specifically bound 125I-labeled alpha-bungarotoxin with KD approximately 3 and 6 nM, i.e., about two orders of magnitude lower than the intact AChR. Nearly 100% of the sites were recovered. The recovery of this high affinity binding required the presence of SDS (approximately 0.02%) but non-denaturing detergents had a strongly inhibitory effect. Unlabeled alpha-toxins competed with labeled alpha-bungarotoxin, alpha-bungarotoxin being more effective than all the other toxins tested. Decamethonium and hexamethonium competed efficiently with alpha-bungarotoxin binding but carbamylcholine had only a weak effect. The main immunogenic region of the AChR was only partially preserved since conformation-dependent monoclonal antibodies to this region bound the alpha subunit-toxin complexes, but much less efficiently than the intact AChR. We conclude that SDS can be advantageous to the recovery of high toxin binding to the alpha subunit which still has not completely recovered its native conformation.  相似文献   

10.
The immunological structure of the acetylcholine receptor (AChR) from the electric organ of Torpedo californica was studied using a large number of monoclonal antibodies which were initially selected for their abilities to bind to intact AChRs. The monoclonal antibodies were tested for their ability to bind to denatured AChR subunits labeled with 125I. Antibodies derived from rats immunized with individual denatured subunits or a mixture of subunits of Torpedo AChR reacted well in the assay. A much smaller proportion of antibodies derived from rats immunized with native Torpedo AChR or native AChR from Electrophorus electricus electric organ, bovine muscle, or human muscle reacted with denatured subunits of Torpedo AChR. Many monoclonal antibodies reacted with more than one subunit, but they always reacted best with the subunit used for immunization. Those monoclonal antibodies that bound to intact subunits were mapped more precisely by their ability to bind characteristic fragments of each subunit generated by proteolysis with Staphylococcal V8 protease. These fragments were analyzed by SDS polyacrylamide gel electrophoresis, and monoclonal antibodies that precipitated the same fragment pattern were placed in groups. By this method, we define a minimum of 28 determinants on Torpedo AChR.  相似文献   

11.
Two high-affinity mAbs were prepared against Torpedo dystrophin, an electric organ protein that is closely similar to human dystrophin, the gene product of the Duchenne muscular dystrophy locus. The antibodies were used to localize dystrophin relative to acetylcholine receptors (AChR) in electric organ and in skeletal muscle, and to show identity between Torpedo dystrophin and the previously described 270/300-kD Torpedo postsynaptic protein. Dystrophin was found in both AChR-rich and AChR-poor regions of the innervated face of the electroplaque. Immunogold experiments showed that AChR and dystrophin were closely intermingled in the AChR domains. In contrast, dystrophin appeared to be absent from many or all AChR-rich domains of the rat neuromuscular junction and of AChR clusters in cultured muscle (Xenopus laevis). It was present, however, in the immediately surrounding membrane (deep regions of the junctional folds, membrane domains interdigitating with and surrounding AChR domains within clusters). These results suggest that dystrophin may have a role in organization of AChR in electric tissue. Dystrophin is not, however, an obligatory component of AChR domains in muscle and, at the neuromuscular junction, its roles may be more related to organization of the junctional folds.  相似文献   

12.
[3H]Meproadifen mustard, an affinity label for the noncompetitive antagonist site of the nicotinic acetylcholine receptor (AChR), specifically alkylates the AChR alpha-subunit when the acetylcholine-binding sites are occupied by agonist (Dreyer, E. B., Hasan, F., Cohen, S. G., and Cohen, J. B. (1986) J. Biol. Chem. 261, 13727-13734). In this report, we identify the site of alkylation within the alpha-subunit as Glu-262. AChR-rich membranes from Torpedo californica electric organ were reacted with [3H]meproadifen mustard in the presence of carbamylcholine and in the absence or presence of nonradioactive meproadifen to define specific alkylation of the noncompetitive antagonist site. Alkylated alpha-subunits were isolated and subjected to chemical or enzymatic cleavage. When digests with CNBr in 70% trifluoroacetic acid or 70% formic acid were fractionated by gel filtration high performance liquid chromatography (HPLC), specifically labeled material was recovered in the void volume fractions. Based upon NH2-terminal sequence analysis, for both digests, the void volume fractions contained a fragment beginning at Gln-208 before the M1 hydrophobic sequence, whereas the sample from the digest in trifluoroacetic acid also contained as a primary sequence a fragment beginning at Thr-244 and extending through the M2 hydrophobic sequence. Sequence analysis revealed no release of 3H for the sample from digestion in formic acid, whereas for the trifluoroacetic acid digest, there was specific release of 3H in cycle 19, which would correspond to Glu-262. This site of alkylation was confirmed by isolation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase HPLC of a specifically labeled fragment from an endoproteinase Lys-C digest of the alkylated alpha-subunit. NH2-terminal amino acid sequencing revealed release of 3H at cycle 20 from a fragment beginning at Met-243 and extending into the M3 hydrophobic sequence. Because [3H]meproadifen mustard contains, as its reactive group, a positively charged quaternary aziridinium ion, Glu-262 of the alpha-subunit is identified as a contributor to the cation-binding domain of the noncompetitive antagonist-binding site and thus of the ion channel.  相似文献   

13.
Long-chain alkanols are general anesthetics which can also act as uncharged noncompetitive inhibitors of the peripheral nicotinic acetylcholine receptor (AChR) by binding to one or more specific sites on the AChR. Cembranoids are naturally occurring, uncharged noncompetitive inhibitors of peripheral and neuronal AChRs, which have no demonstrable general anesthetic activity in vivo. In this study, [3H]tenocyclidine ([3H]TCP), an analogue of the cationic noncompetitive inhibitor phencyclidine (PCP), was used to characterize the cembranoid and long-chain alkanol sites on the desensitized Torpedo californica AChR and to investigate if these sites interact. These studies confirm that there is a single cembranoid site which sterically overlaps the [3H]TCP channel site. This cembranoid site probably also overlaps the sites for the cationic noncompetitive inhibitors, procaine and quinacrine. Evidence is also presented for one or more allosteric cembranoid sites which negatively modulate cembranoid affinity for the inhibitory site. In contrast, long-chain alkanols inhibit [3H]TCP binding through an allosteric mechanism involving two or more alkanol sites which display positive cooperativity toward each other. Double inhibitor studies show that the cembranoid inhibitory site and the alkanol sites are not independent of each other but interfere allosterically with each other's inhibition of [3H]TCP binding. The simplest models consistent with the observed data are presented and discussed.  相似文献   

14.
A region of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of the Torpedo electric organ, containing residues 161-166, has been proposed to be a major antigenic site in the native AChR protein. We report the synthesis of a peptide corresponding to residues 159-169, which contains the proposed antigenic region. In quantitative radiometric titrations, radiolabelled anti-(native AChR) antibodies from three different species, rabbit, rat and dog, exhibited considerable binding (approx. 15% relative to native AChR) to Sepharose-immobilized peptide 159-169, but did not bind significantly to Sepharose-immobilized unrelated proteins or peptides. Specificity was further confirmed by the finding that no rabbit anti-AChR antibodies bound to the peptide after absorption with native AChR. These data indicate that the region 159-169 contains an antigenic site that is readily accessible in solubilized native Torpedo AChR.  相似文献   

15.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

16.
Nirthanan S  Ziebell MR  Chiara DC  Hong F  Cohen JB 《Biochemistry》2005,44(41):13447-13456
The interactions of a photoreactive analogue of benzoylcholine, 4-azido-2,3,5,6-tetrafluorobenzoylcholine (APFBzcholine), with nicotinic acetylcholine receptors (nAChRs) were studied using electrophysiology and photolabeling. APFBzcholine acted as a low-efficacy partial agonist, eliciting maximal responses that were 0.3 and 0.1% of that of acetylcholine for embryonic mouse and Torpedo nAChRs expressed in Xenopus oocytes, respectively. Equilibrium binding studies of [3H]APFBzcholine with nAChR-rich membranes from Torpedo electric organ revealed equal affinities (K(eq) = 12 microM) for the two agonist binding sites. Upon UV irradiation at 254 nm, [3H]APFBzcholine was photoincorporated into the nAChR alpha, gamma, and delta subunits in an agonist-inhibitable manner. Photolabeled amino acids in the agonist binding sites were identified by Edman degradation of isolated, labeled subunit fragments. [3H]APFBzcholine photolabeled gammaLeu-109/deltaLeu-111, gammaTyr-111, and gammaTyr-117 in binding site segment E as well as alphaTyr-198 in alpha subunit binding site segment C. The observed pattern of photolabeling is examined in relation to the predicted orientation of the azide when APFBzcholine is docked in the agonist binding site of a homology model of the nAChR extracellular domain based upon the structure of the snail acetylcholine binding protein.  相似文献   

17.
We studied the effect of rat brain extract on rat muscle cells in vitro by light and electron microscope (EM) autoradiography after labeling acetylcholine receptors (AChR's) with 125I-alpha-bungarotoxin. We found that: (a) In the absence of brain extract, peak site densities within AChR clusters usually do not exceed 4,000 sites/micrometer2. (b) Within hours after exposure to brain extract, AChR's redistribute to form clusters in which the peak site densities are greater than 10,000 sites/micrometer2. Receptor concentration within extract-induced clusters is thus within a factor of 2 of that at the neuromuscular junction (nmj). (c) In the absence of extract, the AChR's and AChR clusters are predominantly on the bottom surface of the myotubes (facing the tissue culture dish). After extract treatment, they are predominantly at the top surface. (d) Plasma membrane in regions of high-density AChR clusters is enriched in membrane with enhanced electron density and surface basal lamina whether or not cells are treated with extract. Extract causes an increase in both these specializations on the top surface of the myotubes. (e) Brain extract does not produce an overall increase in AChR site density or a marked change in degradation rate of receptors in either clustered or nonclustered regions. By producing AChR clusters with junctional site densities and enhanced surface specialization, and by causing an overall shift in AChR's distribution, brain extract mimics early events reported at developing neuromuscular junctions.  相似文献   

18.
R Haring  Y Kloog 《Life sciences》1984,34(11):1047-1055
Binding of [3H]-phencyclidine ( [3H]-PCP) to acetylcholine-receptor enriched membrane from Torpedo ocellata electric organ was studied over a ligand concentration range of 1 to 200 microM. The results indicate that [3H]-PCP is bound to two classes of sites: high affinity (Kd = 6-9 microM) and low affinity (Kd = 85 microM) binding sites. In the absence of cholinergic drugs the ratio of high affinity [3H]-PCP binding sites to 125I-alpha-bungarotoxin (alpha-Bgt) binding sites is 0.37, and that of low affinity [3H]-PCP binding sites to 125I-alpha-Bgt is 1.06. Low affinity [3H]-PCP binding can be completely inhibited by alpha-bungarotoxin (alpha-Bgt), carbamylcholine and d-tubocurarine. This inhibition, together with the one to one stoichiometry with 125I-alpha-Bgt, suggests that the sites to which [3H]-PCP binds with low affinity are the acetylcholine (AcCho) binding sites. In the presence of 1 microM alpha-Bgt which blocks binding of [3H]-PCP to the AcCho binding sites, the ratio of high affinity [3H]-PCP sites to 125I-alpha-Bgt sites is 0.5, indicating the existence of one high affinity PCP site per receptor molecule, The toxin, however, decreases the apparent affinity of [3H]-PCP towards the AcCho receptor as well as the potency of tetracaine or dibucaine in inhibiting [3H]-PCP binding to that receptor. In the latter case the effect involves changes from a biphasic to a simple inhibition curve. The results suggest that non-competitive blockers to the AcCho receptors may affect their own sites as well, and that they do this also by binding to the AcCho binding sites. This is also inferred from the accelerated dissociation of [3H]-PCP from its high affinity binding sites by unlabeled PCP in the concentration range of 10(-3) to 10(-4) M, at which the drug occupies AcCho binding sites as well.  相似文献   

19.
B H White  J B Cohen 《Biochemistry》1988,27(24):8741-8751
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.  相似文献   

20.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号