首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilins are small proteins that form complexes with G-actin and phosphoinositides and are therefore considered to link the microfilament system to signal transduction pathways. In addition, they bind to poly-L-proline, but the biological significance of this interaction is not yet known. The recent molecular cloning of the vasodilator-stimulated phosphoprotein (VASP), an established in vivo substrate of cAMP- and cGMP-dependent protein kinases, revealed the presence of a proline-rich domain which prompted us to investigate a possible interaction with profilins. VASP is a microfilament and focal adhesion associated protein which is also concentrated in highly dynamic regions of the cell cortex. Here, we demonstrate that VASP is a natural proline-rich profilin ligand. Human platelet VASP bound directly to purified profilins from human platelets, calf thymus and birch pollen. Moreover, VASP and a novel protein were specifically extracted from total cell lysates by profilin affinity chromatography and subsequently eluted either with poly-L-proline or a peptide corresponding to a proline-rich VASP motif. Finally, the subcellular distributions of VASP and profilin suggest that both proteins also interact within living cells. Our data support the hypothesis that profilin and VASP act in concert to convey signal transduction to actin filament formation.  相似文献   

2.
In light of recent work implicating profilin from human platelets as a possible regulator of both cytoskeletal dynamics and inositol phospholipid-mediated signaling, we have further characterized the interaction of platelet profilin and the two isoforms of Acanthamoeba profilin with inositol phospholipids. Profilin from human platelets binds to phosphatidylinositol-4-monophosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) with relatively high affinity (Kd approximately 1 microM for PIP2 by equilibrium gel filtration), but interacts only weakly (if at all) with phosphatidylinositol (PI) or inositol trisphosphate IP3) in small-zone gel-filtration assays. The two isoforms of Acanthamoeba profilin both have a lower affinity for PIP2 than does human platelet profilin, but the more basic profilin isoform from Acanthamoeba (profilin-II) has a much higher (approximately 10-microM Kd) affinity than the acidic isoform (profilin-I, 100 to 500-microM Kd). None of the profilins bind to phosphatidylserine (PS) or phosphatidylcholine (PC) in small-zone gel-filtration experiments. The differences in affinity for PIP2 parallel the ability of these three profilins to inhibit PIP2 hydrolysis by soluble phospholipase C (PLC). The results show that the interaction of profilins with PIP2 is specific with respect to both the lipid and the proteins. In Acanthamoeba, the two isoforms of profilin may have specialized functions on the basis of their identical (approximately 10 microM) affinities for actin monomers and different affinities for PIP2.  相似文献   

3.
The actin binding protein profilin has dramatic effects on actin polymerization in vitro and in living cells. Plants have large multigene families encoding profilins, and many cells or tissues can express multiple profilin isoforms. Recently, we characterized several profilin isoforms from maize pollen for their ability to alter cytoarchitecture when microinjected into living plant cells and for their association with poly-L-proline and monomeric actin from maize pollen. In this study, we characterize a new profilin isoform from maize, which has been designated ZmPRO4, that is expressed predominantly in endosperm but is also found at low levels in all tissues examined, including mature and germinated pollen. The affinity of ZmPRO4 for monomeric actin, which was measured by two independent methods, is similar to that of the three profilin isoforms previously identified in pollen. In contrast, the affinity of ZmPRO4 for poly-L-proline is nearly twofold higher than that of native pollen profilin and the other recombinant profilin isoforms. When ZmPRO4 was microinjected into plant cells, the effect on actin-dependent nuclear position was significantly more rapid than that of another pollen profilin isoform, ZmPRO1. A gain-of-function mutant (ZmPRO1-Y6F) was created and found to enhance poly-L-proline binding activity and to disrupt cytoarchitecture as effectively as ZmPRO4. In this study, we demonstrate that profilin isoforms expressed in a single cell can have different effects on actin in living cells and that the poly-L-proline binding function of profilin may have important consequences for the regulation of actin cytoskeletal dynamics in plant cells.  相似文献   

4.
We tested the ability of 87 profilin point mutations to complement temperature-sensitive and null mutations of the single profilin gene of the fission yeast Schizosaccharomyces pombe. We compared the biochemical properties of 13 stable noncomplementing profilins with an equal number of complementing profilin mutants. A large quantitative database revealed the following: 1) in a profilin null background fission yeast grow normally with profilin mutations having >10% of wild-type affinity for actin or poly-L-proline, but lower affinity for either ligand is incompatible with life; 2) in the cdc3-124 profilin ts background, fission yeast function with profilin having only 2-5% wild-type affinity for actin or poly-L-proline; and 3) special mutations show that the ability of profilin to catalyze nucleotide exchange by actin is an essential function. Thus, poly-L-proline binding, actin binding, and actin nucleotide exchange are each independent requirements for profilin function in fission yeast.  相似文献   

5.
Acanthamoeba profilin purified according to E. Reichstein and E.D. Korn (1979, J. Biol. Chem. 254:6174-6179) consists of two isoforms (profilin- I and-II) with approximately the same molecular weight and reactivity to a monoclonal antibody but different isoelectric points and different mobilities on carboxymethyl-agarose chromatography and reversed-phase high-performance liquid chromatography. The isoelectric points of profilin-I is approximately 5.5 and that of profilin-II is greater than or equal to 9.0. Tryptic peptides from the two proteins are substantially different, which suggests that there are major differences in their sequences. At similar concentrations, both profilins prolong the lag phase at the outset of spontaneous polymerization and inhibit the extent of polymerization. Both forms also inhibit elongation weakly at the barbed end and strongly at the pointed end of actin filaments.  相似文献   

6.
We have cloned and sequenced full length cDNAs for Acanthamoeba profilin-I and profilin-II. The genes and the encoded proteins are nearly identical except for the region between bp 121 and 210 where 35% of the nucleotides and 47% of amino acids differ. Most of these substitutions are conservative, although three of them are responsible for the differences in the isoelectric points of the isoforms [Kaiser et al., Cell Biol., 102:221-226, 1986]. The DNA sequence revealed six corrections in the previously published protein sequence of profilin-I [Ampe et al., J. Biol. Chem. 260:834-840, 1985] and for the first time resolved the ambiguities at the five positions where profilin-IA and -IB differ. The DNA sequence of profilin-II also allowed us to make two corrections in the protein sequence [Ampe et al., FEBS Lett. 228:17-21, 1988a]. Probes prepared from the cDNAs revealed 1 profilin-IA gene, one strongly cross-hybridizing profilin-I gene and one strongly reacting profilin-II gene on Southern blots of Acanthamoeba DNA. Weaker reactions with other genomic DNA fragments leave open the possibility of one additional gene each for profilin-I and profilin-II. Four different profilin RNAs were resolved on Northern blots. It possible to align the sequences of the three Acanthamoeba profilins with the sequences of nine other profilins from five different phyla. There are only two invariant residues in these profilin sequences, but many pairwise identities and conservative substitutions that indicate considerable divergence of this family of proteins from its ancestral precursor.  相似文献   

7.
We present a study on the binding properties of the bovine profilin isoforms to both phosphatidylinositol 4,5-bisphosphate (PIP2) and proline-rich peptides derived from vasodilator-stimulated phosphoprotein (VASP) and cyclase-associated protein (CAP). Using microfiltration, we show that compared with profilin II, profilin I has a higher affinity for PIP2. On the other hand, fluorescence spectroscopy reveals that proline-rich peptides bind better to profilin II. At micromolar concentrations, profilin II dimerizes upon binding to proline-rich peptides. Circular dichroism measurements of profilin II reveal a significant conformational change in this protein upon binding of the peptide. We show further that PIP2 effectively competes for binding of profilin I to poly-L-proline, since this isoform, but not profilin II, can be eluted from a poly-L-proline column with PIP2. Using affinity chromatography on either profilin isoform, we identified profilin II as the preferred ligand for VASP in bovine brain extracts. The complementary affinities of the profilin isoforms for PIP2 and the proline-rich peptides offer the cell an opportunity to direct actin assembly at different subcellular localizations through the same or different signal transduction pathways.  相似文献   

8.
Profilin is a G-actin binding protein that may have a role in controlling the ratio of G/F actin within the cell. To devise a way for obtaining large amounts of mammalian profilin in an active state, we transfected Escherichia coli with a plasmid containing a full-length rat spleen profilin cDNA adjacent to a promoter inducible by isopropyl thiogalactoside (IPTG). Upon induction, they synthesized a new protein of 15,000 MW constituting approximately 5% of the total cell protein. This protein bound to poly-L-proline Sepharose and could be eluted with 7 M urea, behavior similar to that exhibited by authentic profilin. The protein could be released from the bacteria in soluble form following sonication, and the profilin could then be purified to homogeneity following chromatography on Sephadex G-75 and DEAE A-50 Sephadex. The protein began with an unblocked Ala, indicating that the initiating formyl and methionine residues had been removed. The dissociation of the recombinant profilin from chicken skeletal muscle actin was characterized by a Kd of approximately 2 microM based on gel filtration analysis and actin polymerization assays. These results show that purified active mammalian profilin can be made conveniently in large quantities. This study also demonstrates the feasibility of using bacterially synthesized profilin in structure-function studies involving mutant profilins altered by site-directed mutagenesis.  相似文献   

9.
Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.  相似文献   

10.
Acanthamoebe profilin has a native molecular weight of 11,700 as measured by sedimentation equilibrium ultracentrifugation and an extinction coefficient at 280 nm of 1.4 X 10(4) M-1cm-1. Rabbit antibodies against Acanthamoeba profilin react only with the 11,700 Mr polypeptide among all other ameba polypeptides separated by electrophoresis. These antibodies react with a 11,700 Mr polypeptide in Physarum but not with any proteins of Dictyostelium or Naeglaria. Antibody-binding assays indicate that approximately 2% of the ameba protein is profilin and that the concentration of profilin is approximately 100 mumol/liter cells. During ion exchange chromatography of soluble extracts of Acanthamoeba on DEAE-cellulose, the immunoreactive profilin splits into two fractions: an unbound fraction previously identified by Reichstein and Korn (1979, J. Biol. Chem., 254:6174-6179) and a tightly bound fraction. Purified profilin from the two fractions is identical by all criteria tested. The tightly bound fraction is likely to be attached indirectly to the DEAE, perhaps by association with actin. By fluorescent antibody staining, profilin is distributed uniformly throughout the cytoplasmic matrix of Acanthamoeba. In 50 mM KCl, high concentrations of Acanthamoeba profilin inhibit the elongation rate of muscle actin filaments measured directly by electron microscopy, but the effect is minimal in KCl with 2 MgCl2. By using the fluorescence change of pyrene-labeled Acanthamoeba actin to assay for polymerization, we confirmed our earlier observation (Tseng, P. C.-H., and T. D. Pollard, 1982, J. Cell Biol. 94:213-218) that Acanthamoeba profilin inhibits nucleation much more strongly than elongation under physiological conditions.  相似文献   

11.
12.
Maize profilin isoforms are functionally distinct   总被引:17,自引:0,他引:17  
Profilin is an actin monomer binding protein that, depending on the conditions, causes either polymerization or depolymerization of actin filaments. In plants, profilins are encoded by multigene families. In this study, an analysis of native and recombinant proteins from maize demonstrates the existence of two classes of functionally distinct profilin isoforms. Class II profilins, including native endosperm profilin and a new recombinant protein, ZmPRO5, have biochemical properties that differ from those of class I profilins. Class II profilins had higher affinity for poly-l-proline and sequestered more monomeric actin than did class I profilins. Conversely, a class I profilin inhibited hydrolysis of membrane phosphatidylinositol-4,5-bisphosphate by phospholipase C more strongly than did a class II profilin. These biochemical properties correlated with the ability of class II profilins to disrupt actin cytoplasmic architecture in live cells more rapidly than did class I profilins. The actin-sequestering activity of both maize profilin classes was found to be dependent on the concentration of free calcium. We propose a model in which profilin alters cellular concentrations of actin polymers in response to fluctuations in cytosolic calcium concentration. These results provide strong evidence that the maize profilin gene family consists of at least two classes, with distinct biochemical and live-cell properties, implying that the maize profilin isoforms perform distinct functions in the plant.  相似文献   

13.
Profilin isoforms in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Eukaryotic cells contain a large number of actin binding proteins of different functions, locations and concentrations. They bind either to monomeric actin (G-actin) or to actin filaments (F-actin) and thus regulate the dynamic rearrangement of the actin cytoskeleton. The Dictyostelium discoideum genome harbors representatives of all G-actin binding proteins including actobindin, twinfilin, and profilin. A phylogenetic analysis of all profilins suggests that two distinguishable groups emerged very early in evolution and comprise either vertebrate and viral profilins or profilins from all other organisms. The newly discovered profilin III isoform in D. discoideum shows all functions that are typical for a profilin. However, the concentration of the third isoform in wild type cells reaches only about 0.5% of total profilin. In a yeast-2-hybrid assay profilin III was found to bind specifically to the proline-rich region of the cytoskeleton-associated vasodilator-stimulated phosphoprotein (VASP). Immunolocalization studies showed similar to VASP the profilin III isoform in filopodia and an enrichment at their tips. Cells lacking the profilin III isoform show defects in cell motility during chemotaxis. The low abundance and the specific interaction with VASP argue against a significant actin sequestering function of the profilin III isoform.  相似文献   

14.
The covalent structure of Acanthamoeba actobindin   总被引:3,自引:0,他引:3  
Actobindin is a protein from Acanthamoeba castellanii with bivalent affinity for monomeric actin. Because it can bind two molecules of actin, actobindin is a substantially more potent inhibitor of the early phase of actin polymerization than of F-actin elongation. The complete amino acid sequence of 88 residues has been deduced from the determined sequences of overlapping peptides obtained by cleavage with trypsin, Staphylococcus V8 protease, endoproteinase Asp-N, and CNBr. Actobindin contains 2 trimethyllysine residues and an acetylated NH2 terminus. About 76% of the actobindin molecule consists of two nearly identical repeated segments of approximately 33 residues each. This could explain actobindin's bivalent affinity for actin. The circular dichroism spectrum of actobindin is consistent with 15% alpha-helix and 22% beta-sheet structure. A hexapeptide with sequence LKHAET, which occurs at the beginning of each of the repeated segments of actobindin, is very similar to sequences found in tropomyosin, muscle myosin heavy chain, paramyosin, and Dictyostelium alpha-actinin. A longer stretch in each repeated segment is similar to sequences in mammalian and amoeba profilins. Interestingly, the sequences around the trimethyllysine residues in each of the repeats are similar to the sequences flanking the trimethyllysine residue of rabbit reticulocyte elongation factor 1 alpha, but not to the sequences around the trimethyllysine residues in Acanthamoeba actin and Acanthamoeba profilins I and II.  相似文献   

15.
Expression of human profilin-I does not complement the temperature-sensitive cdc3-124 mutation of the single profilin gene in fission yeast Schizosaccharomyces pombe, resulting in death from cytokinesis defects. Human profilin-I and S. pombe profilin have similar affinities for actin monomers, the FH1 domain of fission yeast formin Cdc12p and poly-l-proline (Lu, J., and Pollard, T. D. (2001) Mol. Biol. Cell 12, 1161–1175), but human profilin-I does not stimulate actin filament elongation by formin Cdc12p like S. pombe profilin. Two crystal structures of S. pombe profilin and homology models of S. pombe profilin bound to actin show how the two profilins bind to identical surfaces on animal and yeast actins even though 75% of the residues on the profilin side of the interaction differ in the two profilins. Overexpression of human profilin-I in fission yeast expressing native profilin also causes cytokinesis defects incompatible with viability. Human profilin-I with the R88E mutation has no detectable affinity for actin and does not have this dominant overexpression phenotype. The Y6D mutation reduces the affinity of human profilin-I for poly-l-proline by 1000-fold, but overexpression of Y6D profilin in fission yeast is lethal. The most likely hypotheses to explain the incompatibility of human profilin-I with Cdc12p are differences in interactions with the proline-rich sequences in the FH1 domain of Cdc12p and wider “wings” that interact with actin.The small protein profilin not only helps to maintain a cytoplasmic pool of actin monomers ready to elongate actin filament barbed ends (2), but it also binds to type II poly-l-proline helices (3, 4). The actin (5) and poly-l-proline (68) binding sites are on opposite sides of the profilin molecule, so profilin can link actin to proline-rich targets. Viability of fission yeast depends independently on profilin binding to both actin and poly-l-proline, although cells survive >10-fold reductions in affinity for either ligand (1).Fission yeast Schizosaccharomyces pombe depend on formin Cdc12p (9, 10) and profilin (11) to assemble actin filaments for the cytokinetic contractile ring. Formins are multidomain proteins that nucleate and assemble unbranched actin filaments (12). Formin FH2 domains form homodimers that can associate processively with the barbed ends of growing actin filaments (13, 14). FH2 dimers slow the elongation of barbed ends (15). Most formin proteins have an FH1 domain linked to the FH2 domain. Binding profilin-actin to multiple polyproline sites in an FH1 domain concentrates actin near the barbed end of an actin filament associated with a formin FH2 homodimer. Actin transfers very rapidly from the FH1 domains onto the filament end (16) allowing profilin to stimulate elongation of the filament (15, 17).We tested the ability of human (Homo sapiens, Hs)7 profilin-I to complement the temperature-sensitive cdc3-124 mutation (11) in the single fission yeast profilin gene with the aim of using yeast to characterize human profilin mutations. The failure of expression of Hs profilin-I to complement the cdc3-124 mutation prompted us to compare human and fission yeast profilins more carefully. We report here a surprising incompatibility of Hs profilin-I with fission yeast formin Cdc12p, a crystal structure of fission yeast profilin, which allowed a detailed comparison with Hs profilin, and mutations that revealed how overexpression of Hs profilin-I compromises the viability of wild-type fission yeast.  相似文献   

16.
Three-dimensional solution structure of Acanthamoeba profilin-I   总被引:6,自引:0,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,122(6):1277-1283
We have determined a medium resolution three-dimensional solution structure of Acanthamoeba profilin-I by multidimensional nuclear magnetic resonance spectroscopy. This 13-kD actin binding protein consists of a five stranded antiparallel beta sheet flanked by NH2- and COOH-terminal helices on one face and by a third helix and a two stranded beta sheet on the other face. Data from actin-profilin cross- linking experiments and the localization of conserved residues between profilins in different phyla indicate that actin binding occurs on the molecular face occupied by the terminal helices. The other face of the molecule contains the residues that differ between Acanthamoeba profilins-I and II and may be important in determining the difference in polyphosphoinositide binding between these isoforms. This suggests that lipids and actin bind to different faces of the molecule.  相似文献   

17.
The mature, functional sieve tube, which forms the conduit for assimilate distribution in higher plants, is dependent upon protein import from the companion cells for maintenance of the phloem long-distance translocation system. Using antibodies raised against proteins present in the sieve-tube exudate of Ricinus communis (castor bean) seedlings, a cDNA was cloned which encoded a putative profilin, termed RcPRO1. Expression and localization studies indicated that RcPRO1 mRNA encodes a phloem profilin, with some expression occurring in epidermal, cortex, pith and xylem tissue. Purified, recombinant RcPRO1 was functionally equivalent to recombinant maize profilin ZmPRO4 in a live cell nuclear displacement assay. The apparent equilibrium dissociation constant for RcPRO1 binding to plant monomeric (G-)actin was lower than the previously characterized maize profilins. Moreover, the affinity of RcPRO1 for poly-L-proline (PLP) was significantly higher than that for recombinant maize profilins. Within the sieve-tube exudate, profilin was present in 15-fold molar excess to actin. The data suggest that actin filament formation is prevented within the assimilate stream. These results are discussed in terms of the unique physiology of the phloem.  相似文献   

18.
Human profilins are multifunctional, single-domain proteins which directly link the actin microfilament system to a variety of signalling pathways via two spatially distinct binding sites. Profilin binds to monomeric actin in a 1:1 complex, catalyzes the exchange of the actin-bound nucleotide and regulates actin filament barbed end assembly. Like SH3 domains, profilin has a surface-exposed aromatic patch which binds to proline-rich peptides. Various multidomain proteins including members of the Ena/VASP and formin families localize profilin:actin complexes through profilin:poly-L-proline interactions to particular cytoskeletal locations (e.g. focal adhesions, cleavage furrows). Humans express a basic (I) and an acidic (II) isoform of profilin which exhibit different affinities for peptides and proteins rich in proline residues. Here, we report the crystallization and X-ray structure determination of human profilin II to 2.2 A. This structure reveals an aromatic extension of the previously defined poly-L-proline binding site for profilin I. In contrast to serine 29 of profilin I, tyrosine 29 in profilin II is capable of forming an additional stacking interaction and a hydrogen bond with poly-L-proline which may account for the increased affinity of the second isoform for proline-rich peptides. Differential isoform specificity for proline-rich proteins may be attributed to the differences in charged and hydrophobic residues in and proximal to the poly-L-proline binding site. The actin-binding face remains nearly identical with the exception of five amino acid differences. These observations are important for the understanding of the functional and structural differences between these two classes of profilin isoforms.  相似文献   

19.
Profilins are thought to be essential for regulation of actin assembly. However, the functions of profilins in mammalian tissues are not well understood. In mice profilin I is expressed ubiquitously while profilin II is expressed at high levels only in brain. In extracts from mouse brain, profilin I and profilin II can form complexes with regulators of endocytosis, synaptic vesicle recycling and actin assembly. Using mass spectrometry and database searching we characterized a number of ligands for profilin I and profilin II from mouse brain extracts including dynamin I, clathrin, synapsin, Rho-associated coiled-coil kinase, the Rac-associated protein NAP1 and a member of the NSF/sec18 family. In vivo, profilins co-localize with dynamin I and synapsin in axonal and dendritic processes. Our findings strongly suggest that in brain profilin I and profilin II complexes link the actin cytoskeleton and endocytic membrane flow, directing actin and clathrin assembly to distinct membrane domains.  相似文献   

20.
We identified four polypeptides of 47, 44, 40, and 35 kD that bind to profilin-Sepharose and elute with high salt. When purified by conventional chromatography using an antibody to the 47-kD polypeptide, these four polypeptides copurified as a stoichiometric complex together with three additional polypeptides of 19, 18, and 13 kD that varied in their proportions to the other polypeptides. Partial protein sequences showed that the 47-kD polypeptide is a homologue of S. pombe act2 and the 44-kD polypeptide is a homologue of S. cerevisiae ACT2, both unconventional actins. The 40-kD polypeptide contains a sequence similar to the WD40 motif of the G beta subunit of a trimeric G-protein from Dictyostelium discoideum. From partial sequences, the 35-, 19-, and 18-kD polypeptides appear to be novel proteins. On gel filtration the complex of purified polypeptides cochromatograph with a Stokes' radius of 4.8 nm, a value consistent with a globular particle of 220 kD containing one copy of each polypeptide. Cell extracts also contain components of the complex that do not bind the profilin column. Affinity purified antibodies localize 47- and 18/19-kD polypeptides in the cortex and filopodia of Acanthamoeba. Antibodies to the 47-kD unconventional actin cross-react on immunoblots with polypeptides of similar size in Dictyostelium, rabbit muscle, and conventional preparations of rabbit muscle actin but do not react with actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号