首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The growth and development of roots in plants depends on the specification and maintenance of the root apical meristem. Here, we report the identification of CBL, a gene required for embryo and root development in Arabidopsis, and encodes cystathionine beta‐lyase (CBL), which catalyzes the penultimate step in methionine (Met) biosynthesis, and which also led to the discovery of a previous unknown, but crucial, metabolic contribution by the Met biosynthesis pathway. CBL is expressed in embryos and shows quiescent center (QC)‐enriched expression pattern in the root. cbl mutant has impaired embryo patterning, defective root stem cell niche, stunted root growth, and reduces accumulation of the root master regulators PLETHORA1 (PLT1) and PLT2. Furthermore, mutation in CBL severely decreases abundance of several PIN‐FORMED (PIN) proteins and impairs auxin‐responsive gene expression in the root tip. cbl seedlings also exhibit global reduction in histone H3 Lys‐4 trimethylation (H3K4me3) and DNA methylation. Importantly, mutation in CBL reduces the abundance of H3K4me3 modification in PLT1/2 genes and downregulates their expression. Overexpression of PLT2 partially rescues cbl root meristem defect, suggesting that CBL acts in part through PLT1/2. Moreover, exogenous supplementation of Met also restores the impaired QC activity and the root growth defects of cbl. Taken together, our results highlight the unique role of CBL to maintain the root stem cell niche by cooperative actions between Met biosynthesis and epigenetic modification of key developmental regulators.  相似文献   

4.
5.
Han W  Zhang H  Wang MH 《BMB reports》2010,43(12):813-817
Plants undergo cell division throughout their life in order to maintain their growth. It is well known that root and shoot tip of plants possess meristems, which contain quiescent cells. Fluridone (1-methyl-3-phenyl-5-(3-trifluoromethyl (phenyl))-4-(1H)-pyridinone) is an established inhibitor of both ABA and carotenoid biosynthesis. However, the other functions of fluridone remain undiscovered. In this report, we provide experimental evidence that fluridone plays a role in the division of the quiescent centre of the Arabidopsis root meristem. This study examined the effects of exogenous fluridone and ABA on the development of the stem cell niche in Arabidopsis root. We show that fluridone promoted the division of stem cells in the quiescent centre, whereas exogenous ABA suppressed quiescent centre division. Furthermore, we established a novel regulatory function for fluridone by demonstrating that it plays an important role in postembryonic development.  相似文献   

6.
7.
8.
9.
The neural stem cell niche defines a zone in which stem cells are retained after embryonic development for the production of new cells of the nervous system. This continual supply of new neurons and glia then provides the postnatal and adult brain with an added capacity for cellular plasticity, albeit one that is restricted to a few specific zones within the brain. Critical to the maintenance of the stem cell niche are microenvironmental cues and cell-cell interactions that act to balance stem cell quiescence with proliferation and to direct neurogenesis versus gliogenesis lineage decisions. Ultimately, based on the location of the niche, stem cells of the adult brain support regeneration in the dentate gyrus of the hippocampus and the olfactory bulb through neuron replacement. Here, we provide a summary of the current understanding of the organization and control mechanisms of the neural stem cell niche.  相似文献   

10.
11.
12.
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.  相似文献   

13.
14.
15.
The stem cell niche (SCN) is critical in maintaining continuous postembryonic growth of the plant root. During their growth in soil, plant roots are often challenged by various biotic or abiotic stresses, resulting in damage to the SCN. This can be repaired by the reconstruction of a functional SCN. Previous studies examining the SCN’s reconstruction often introduce physical damage including laser ablation or surgical excision. In this study, we performed a time-course observation of the SCN reconstruction in pWOX5:icals3m roots, an inducible system that causes non-invasive SCN differentiation upon induction of estradiol on Arabidopsis (Arabidopsis thaliana) root. We found a stage-dependent reconstruction of SCN in pWOX5:icals3m roots, with division-driven anatomic reorganization in the early stage of the SCN recovery, and cell fate specification of new SCN in later stages. During the recovery of the SCN, the local accumulation of auxin was coincident with the cell division pattern, exhibiting a spatial shift in the root tip. In the early stage, division mostly occurred in the neighboring stele to the SCN position, while division in endodermal layers seemed to contribute more in the later stages, when the SCN was specified. The precise re-positioning of SCN seemed to be determined by mutual antagonism between auxin and cytokinin, a conserved mechanism that also regulates damage-induced root regeneration. Our results thus provide time-course information about the reconstruction of SCN in intact Arabidopsis roots, which highlights the stage-dependent re-patterning in response to differentiated quiescent center.

Time course live imaging technique revealed stage-dependent reconstruction patterns of stem cells in the intact Arabidopsis roots in response to differentiated quiescent center.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号