首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conserved quartets near 5' intron junctions in primate nuclear pre-mRNA   总被引:2,自引:0,他引:2  
Analysis of a 1000 nucleotide span around 664 primate 5' exon/intron junctions revealed frequent recurrences of G-rich runs downstream of the 5' splice sites. In particular, AGGG, GGGA, GGGG, GGGT and TGGG are frequent at this site. Some C-rich quarters are frequent upstream of the 5' splice site. Similar behaviour of these G- and C-rich quartets is indicated for the 587 rodent introns and for a combined eukaryotic file containing 1688 introns. (A)GGG(A) is also frequent in the introns 60 nucleotides upstream of the 3' splice site, and (A)CCC(A) is frequently found in the exons downstream of the 3' site. The same consistent behaviour of the 3' splice sites is obtained as for the 5' sites, for the primates, rodents and combined eukaryotic file. These results suggest that in addition to the well-conserved 5' and 3' splice sequences, exon as well as intron sequences may play a role in nuclear pre-mRNA splicing.  相似文献   

2.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

3.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

4.
5.
Inclusion of fibronectin alternative exon B in mRNA is developmentally regulated. Here we demonstrate that exon B contains two unique purine-rich sequence tracts, PRE1 and PRE2, that are important for proper 5' splice site selection both in vivo and in vitro. Targeted mutations of both PREs decreased the inclusion of exon B in the mRNA by 50% in vivo. Deletion or mutation of the PREs reduced removal of the downstream intron, but not the upstream intron, and induced the activation of cryptic 5' splice sites in vitro. PRE-mediated 5' splice selection activity appears sensitive to position and sequence context. A well characterized exon sequence enhancer that normally acts on the upstream 3' splice site can partially rescue proper exon B 5' splice site selection. In addition, we found that PRE 5' splice selection activity was preserved when exon B was inserted into a heterologous pre-mRNA substrate. Possible roles of these unique activities in modulating exon B splicing are considered.  相似文献   

6.
C Schmelzer  M W Müller 《Cell》1987,51(5):753-762
Deletion or substitution of the branch A residue in group II intron bl1 significantly reduces splicing activity; yet, residual exon ligation is correct, and lariats have their branch points at the normal distance from the 3' end of the intron. Mutations in the sequence facing the branch point also allow residual lariat formation; however, free 3' exons are generated with false 5' termini, all of which are within a UCACA consensus sequence located upstream or downstream of the normal 3' splice site. These results indicate that both the conserved 3' splice site APy and the spatial arrangements in stem 6 are crucial for correct 3' splice site selection.  相似文献   

7.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

8.
The molecular basis of the skipping of constitutive exons in many messenger RNAs is not fully understood. A well-studied example is exon 9 of the human cystic fibrosis transmembrane conductance regulator gene (CFTR), in which an abbreviated polypyrimidine tract between the branch point A and the 3' splice site is associated with increased exon skipping and disease. However, many exons, both in CFTR and in other genes and have short polypyrimidine tracts in their 3' splice sites, yet they are not skipped. Inspection of the 5' splice sites immediately up- and downstream of exon 9 revealed deviations from consensus sequence, so we hypothesized that this exon may be inherently vulnerable to skipping. To test this idea, we constructed a CFTR minigene and replicated exon 9 skipping associated with the length of the polypyrimidine tract upstream of exon 9. We then mutated the flanking 5' splice sites and determined the effect on exon skipping. Conversion of the upstream 5' splice site to consensus by replacing a pyrimidine at position +3 with a purine resulted in increased exon skipping. In contrast, conversion of the downstream 5' splice site to consensus by insertion of an adenine at position +4 resulted in a substantial reduction in exon 9 skipping, regardless of whether the upstream 5' splice site was consensus or not. These results suggested that the native downstream 5' splice site plays an important role in CFTR exon 9 skipping, a hypothesis that was supported by data from sheep and mouse genomes. Although CFTR exon 9 in sheep is preceded by a long polypyrimidine tract (Y(14)), it skips exon 9 in vivo and has a nonconsensus downstream 5' splice site identical to that in humans. On the other hand, CFTR exon 9 in mice is preceded by a short polypyrimidine tract (Y(5)) but is not skipped in vivo. Its downstream 5' splice site differs from that in humans by a 2-nt insertion, which, when introduced into the human CFTR minigene, abolished exon 9 skipping. Taken together, these observations place renewed emphasis on deviations at 5' splice sites in nucleotides other than the invariant GT, particularly when such changes are found in conjunction with other altered splicing sequences, such as a shortened polypyrimidine tract. Thus, careful inspection of entire 5' splice sites may identify constitutive exons that are vulnerable to skipping.  相似文献   

9.
10.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

11.
We have investigated use of a conserved non-canonical GA 5' splice site present in vertebrate fibroblast growth factor receptor (FGFR) genes. Despite previous studies suggesting that GA at the beginning of an intron is incompatible with splicing, we observe efficient utilization of this splice site for human FGFR1 gene constructs. We show that use of the GA splice site is dependent on both a conventional splice site six nucleotides upstream and sequence elements within the downstream intron. Furthermore, our results are consistent with competition between the tandem 5' splice sites being mediated by U6 snRNP, rather than U1 snRNP. Thus the GA 5' splice site represents an extension of the adjacent conventional 5' splice site, the first natural example of such a composite 5' splice site.  相似文献   

12.
U-rich tracts enhance 3' splice site recognition in plant nuclei   总被引:5,自引:1,他引:4  
The process of 5' and 3' splice site definition in plant pre-mRNA splicing differs from that in mammals and yeast. In mammals, splice sites are chosen by their complementarity to U1 snRNA surrounding the /GU at the 5' splice site and by the strength of the pyrimidine tract preceding the AG/ at the 3' splice site; in plants, the 3' intron boundary is defined in a position-dependent manner relative to AU-rich elements within the intron. To determine if uridines are utilized to any extent in plant 3' splice site recognition, uridines in the region preceding the normal (−1) 3' splice site of pea rbcS3A intron 1 were replaced with adenosines. This mutant activates two cryptic 3' splice sites (+62, +95) in the downstream exon, indicating that the uridines in the region immediately preceding the normal (−1) site are essential for recognition. Placement of different length uridine tracts upstream from the cryptic +62 site indicated that a cryptic exonic 3' splice site containing 14 or 10 uridine tracts with a G at −4 can effectively outcompete the normal 3' splice site containing an eight uridine tract with a U at −4. Substitutions at the −4 position demonstrated that the identity of the nucleotide at this position greatly affects 3' splice site selection. It has been concluded that several factors affect competition between these 3' splice sites. These factors include the position of the AU transition point, the strength of the uridine tract immediately preceding the 3' terminal CAG/ and the identity of nucleotide −4.  相似文献   

13.
M Aebi  H Hornig  C Weissmann 《Cell》1987,50(2):237-246
We have generated all possible single point mutations of the invariant 5' GT of the large beta-globin intron and determined their effect on splicing in vitro. None of the mutants prevented cleavage in the 5' splice region, but many reduced or abolished exon joining. The mutations GT----TT and GT----CT resulted in a shift of the 5' cleavage site on nucleotide upstream; in the case of the mutation GT----TT, this shift was reverted by a second site mutation within the 5' splice region. Our results suggest that the 5' cleavage site is determined not by the conserved GU sequence but by the 5' splice region as a whole, most probably via base-pairing to the 5' end of the U1 snRNA.  相似文献   

14.
J Ct  B Chabot 《RNA (New York, N.Y.)》1997,3(11):1248-1261
In the murine gene encoding the neuronal cell adhesion molecule (NCAM), the integrity of the 5' splice site of exon 18 (E18) is essential for regulation of alternative splicing. To further study the contribution of 5' splice site sequences, we used a simple NCAM pre-mRNA containing a portion of E18 fused to E19 and separated by a shortened intron. This RNA is spliced in vitro to produce five sets of lariat intermediates and products, the most abundant set displaying aberrant migration in acrylamide/urea gels. Base pairing interactions between positions +5 and +8 of the intron and positions -3 and -6 from the branch point were responsible for the faster migration of this set of lariat molecules. To test whether the duplex structure forms earlier and contributes to 5' splice site selection, we used NCAM substrates carrying the 5' splice sites of E17 and E18 in competition for the 3' splice site of E19. Mutations upstream of the major branch site improve E18/E19 splicing in NIH3T3 extracts, whereas compensatory mutations at positions +7 and +8 neutralize the effect of branch site mutations and curtail E18/E19 splicing. Our data suggest that duplex formation occurs early and interferes with the assembly of complexes initiated on the 5' splice site of NCAM E18. This novel type of intron interaction may exist in the introns of other mammalian pre-mRNAs.  相似文献   

15.
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.  相似文献   

16.
Alternative 5' splice site selection allows Bcl-x to produce two isoforms with opposite effects on apoptosis. The pro-apoptotic Bcl-x(S) variant is up-regulated by ceramide and down-regulated by protein kinase C through specific cis-acting exonic elements, one of which is bound by SAP155. Splicing to the Bcl-x(S) 5' splice site is also enforced by heterogeneous nuclear ribonucleoprotein (hnRNP) F/H proteins and by Sam68 in cooperation with hnRNP A1. Here, we have characterized exon elements that influence splicing to the 5' splice site of the anti-apoptotic Bcl-x(L) isoform. Within a 86-nucleotide region (B3) located immediately upstream of the Bcl-x(L) donor site we have identified two elements (ML2 and AM2) that stimulate splicing to the Bcl-x(L) 5' splice site. SRp30c binds to these elements and can shift splicing to the 5' splice site of Bcl-x(L) in an ML2/AM2-dependent manner in vitro and in vivo. The B3 region also contains an element that represses the use of Bcl-x(L). This element is bound by U1 small nuclear ribonucleoprotein and contains two 5' splice sites that can be used when the Bcl-x(L) 5' splice site is mutated or the ML2/AM2 elements are deleted. Conversely, mutating the cryptic 5' splice sites stimulates splicing to the Bcl-x(L) site. Thus, SRp30c stimulates splicing to the downstream 5' splice site of Bcl-x(L), thereby attenuating the repressive effect of upstream U1 snRNP binding sites.  相似文献   

17.
18.
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons.  相似文献   

19.
Several 3' splice signals in nuclear precursor mRNAs have already been known for some time: the AG doublet on the left-hand side of the splice and a run of pyrimidines just upstream of it. More recently it has been noted that the YNYTRAY sequence (where Y is a pyrimidine, R a purine and N any base) is a branching-sequence participating in formation of a lariat structure. Keller and Noon have shown the existence of several putative consensus sequences at this site. In this work, extensive computations of the distributions of 256 quartets in all primate nuclear pre-mRNA intron sequences present in GenBank have been carried out. Several putative signals upstream and downstream of the 3' splice have been detected. These have been compared with the results obtained in analogous computations carried out on all nuclear pre-mRNA introns present in a combined eukaryotic file containing mammal, non-mammalian vertebrate, invertebrate and plant sequences. The distributions of the more interesting oligomers are shown here. Of particular interest are the putative (A)GGG(A) signal 60 nucleotides upstream of the 3' splice site and (A)CCC(A) 3-40 nucleotides downstream of it. A possible splicing model explaining these data and involving formation of alternative hairpin loop structures is proposed.  相似文献   

20.
Exon 7B in the hnRNP A1 pre-mRNA is alternatively spliced to yield A1 and A1(B), two proteins that differ in their ability to modulate 5' splice site selection. Sequencing the murine intron downstream of exon 7B revealed the existence of several regions of similarity to the corresponding human intron. In vitro splicing assays indicate that an 84-nt region (CE6IO) decreases splicing to the proximal 5' splice site in a pre-mRNA carrying the 5' splice sites of exon 7 and 7B. In vivo, the CE6IO element promotes exon 7B skipping in pre-mRNAs expressed from a mini-gene containing the hnRNP A1 alternative splicing unit. Using oligonucleotide-targeted RNase H cleavage assays, we provide support for the existence of highly stable base pairing interactions between CE6IO and the 5' splice site region of exon 7B. Duplex formation occurs in naked pre-mRNA, resists incubation in splicing extracts, and is associated with a reduction in the assembly of U1 snRNP-dependent complexes to the 5' splice site of exon 7B. Our results demonstrate that pre-mRNA secondary structure plays an important role in promoting exon 7B skipping in the A1 pre-mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号