首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Electrophysiology of growth control and acupuncture   总被引:4,自引:0,他引:4  
Shang C 《Life sciences》2001,68(12):1333-1342
Bioelectric fields have been shown to interact with morphogens and guide growth control. The morphogenetic singularity theory published a decade ago suggests that organizing centers have high density of gap junctions and high electrical conductance. They are the singular points in morphogen gradient and bioelectric field. A growth control system originates from a network of organizing centers containing under-differentiated cells and retains its regulatory functions after embryogenesis. The formation and maintenance of all the physiological systems are directly dependent on the activity of the growth control system. The evolutionary origin of the growth control system is likely to have preceded all the other physiological systems. Its genetic blueprint might have served as a template from which the newer systems evolved. The growth control signal transduction is embedded in the activity of the function-based physiological systems. The regulation of most physiological processes is through growth control mechanisms such as hypertrophy, hyperplasia, atrophy, and apoptosis. Acupuncture points, which also have high electrical conductance and high density of gap junctions, originate from organizing centers. This theory can explain the distribution and non-specific activation of organizing centers and many research results in acupuncture. In several 'prospective blind trials', recent research results have supported its corollary on the role of singularity and separatrix in morphogenesis, the predictions on the high electric conductance and the high density of gap junctions at the organizing centers. These advances have broad implications in biomedical sciences.  相似文献   

3.
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems’ contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.  相似文献   

4.
Mitochondria are considered one of the most important subcellular organelles for targeting and delivering drugs because mitochondria are the main location for various cellular functions and energy (i.e., ATP) production, and mitochondrial dysfunctions and malfunctions cause diverse diseases such as neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. In particular, unique mitochondrial characteristics (e.g., negatively polarized membrane potential, alkaline pH, high reactive oxygen species level, high glutathione level, high temperature, and paradoxical mitochondrial dynamics) in pathological cancers have been used as targets, signals, triggers, or driving forces for specific sensing/diagnosing/imaging of characteristic changes in mitochondria, targeted drug delivery on mitochondria, targeted drug delivery/accumulation into mitochondria, or stimuli-triggered drug release in mitochondria. In this review, we describe the distinctive structures, functions, and physiological properties of cancer mitochondria and discuss recent technologies of mitochondria-specific “key characteristic” sensing systems, mitochondria-targeted “drug delivery” systems, and mitochondrial stimuli-specific “drug release” systems as well as their strengths and weaknesses.  相似文献   

5.
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.  相似文献   

6.
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions.

The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.  相似文献   

7.
Insect galectins: roles in immunity and development   总被引:3,自引:0,他引:3  
As evidenced by the reviews in this special issue of Glycoconjugate Journal, much research is focused on determining functions for mammalian galectins. However, the identification of precise functions for mammalian galectins may be complicated by redundancy in tissue expression and in target cell recognition of the many mammalian galectins. Therefore, lower organisms may be useful in deciphering precise functions for galectins. Unfortunately, some genetically manipulable model systems such as Caenorhabditis elegans may have more galectins than mammals. Recently, galectins were identified in two well-studied insect systems, Drosophila melanogaster and Anopheles gambiae. In addition to the powerful genetic manipulation available in these insect models, there is a sophisticated understanding of many biological processes in these organisms that can be directly compared and applied to mammalian systems. Understanding the roles of galectins in insects may provide insight into precise functions of galectins in mammals.  相似文献   

8.
Twelve water channels (aquaporins) are expressed in mammalian reproductive systems, and play very important roles in maintaining water homeostasis in reproductive cells. Impairment of their functions can result in attenuated male and female fertility. Alteration of AQPs expression is also found in reproductive tissues of the patients with polycystic ovarian syndrome, endometriosis or endometrium carcinoma. A lot of data have increased understanding of the functions and mechanisms of regulation of aquaporins at both the molecular and the clinical level. Researches have also focused on aquaporins as therapeutic targets. This review discusses recent advances in uncovering the physiological and pathophysiological roles of aquaporins in the reproductive systems.  相似文献   

9.
The group I metabotropic glutamate receptors, mGluR1 and mGluR5, exhibit a high degree of sequence homology, and are often found co-expressed in the same neuronal populations. These receptors couple to a broad array of effector systems, and are implicated in diverse physiological and pathophysiological functions. Due to the high degree of sequence homology, and the findings that these receptors couple identically in recombinant systems, it has been generally assumed that these two group I mGluR subtypes would exhibit redundant function when coexpressed in the same neurons. With the advent of subtype-selective pharmacological tools, it has become possible to tease apart the functions of mGluR1 and mGluR5 in the same neuron. The emerging picture is one of diverse function, which implies differential regulation. Interestingly, the group I mGluRs are modulated by a rich variety of regulatory systems, which may explain how these receptors can mediate divergent actions when present in the same cell.  相似文献   

10.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

11.
谈谈生物分类系统的两种功能   总被引:1,自引:0,他引:1  
王心丽  万霞 《昆虫知识》2003,40(4):380-384
阐述了生物分类系统具有的 2种功能 :( 1 )指导识别鉴定生物种类 ;( 2 )表达生物的系统发育关系。讨论了分类系统有无可能和有无必要同时担负 2种功能。分析了 2种功能互相混淆所带来的问题 ,并就澄清分类系统的 2种功能提出了一些建议。  相似文献   

12.
The thermotropic phase behavior of monosialoganglioside in a dilute aqueous dispersion at pH 6.8 was measured by using synchrotron radiation small-angle x-ray scattering and was analyzed by a shell-modeling method. Previous calorimetric studies on ganglioside systems have shown quite different thermotropic behaviors from other biological lipid systems, however, the details have still been ambiguous. Because of high statistical data and a shell-modeling analysis, we could elucidate the internal structural change of monosialoganglioside micelle induced by the elevation of temperature from 6 to 60 degrees C, that is, the shrinkage of the hydrophilic region and the slight expansion of the hydrophobic region occurring simultaneously, accompanying the elongation of the axial ratios of the ellipsoidal micelles. The model structures obtained explain the changes in the experimental scattering curves, the distance distribution functions, and the gyration radii. In addition we have also found an evident thermal hysteresis in the scattering curves and in the structural parameters. The present result suggests that the thickness of the hydrophilic region, namely, the conformation of oligosaccharide chains, is sensitive to a change of temperature.  相似文献   

13.
Neural prostheses partially restore body functions by technical nerve excitation after trauma or neurological diseases. External devices and implants have been developed since the early 1960s for many applications. Several systems have reached nowadays clinical practice: Cochlea implants help the deaf to hear, micturition is induced by bladder stimulators in paralyzed persons and deep brain stimulation helps patients with Parkinson's disease to participate in daily life again. So far, clinical neural prostheses are fabricated with means of precision mechanics. Since microsystem technology opens the opportunity to design and develop complex systems with a high number of electrodes to interface with the nervous systems, the opportunity for selective stimulation and complex implant scenarios seems to be feasible in the near future. The potentials and limitations with regard to biomedical microdevices are introduced and discussed in this paper. Target specifications are derived from existing implants and are discussed on selected applications that has been investigated in experimental research: a micromachined implant to interface a nerve stump with a sieve electrode, cuff electrodes with integrated electronics, and an epiretinal vision prosthesis.  相似文献   

14.
RNAi in mice: a promising approach to decipher gene functions in vivo   总被引:2,自引:0,他引:2  
Coumoul X  Deng CX 《Biochimie》2006,88(6):637-643
RNA interference (RNAi) is a simple and powerful tool widely used to study gene functions in many species. Vector-based systems using RNA polymerase III promoters have been developed to achieve stable expression of small interfering RNA (siRNA) or small hairpin RNA (shRNA) in mammalian cells. Recent investigations demonstrated that when, combined with the Cre-loxP system, the vector-based RNAi can be used to achieve conditional or tissue specific knockdown of endogenous genes with high efficiency in mice. Here, we review these recent progresses and discuss the advantages, limitations and future development of this emerging technology.  相似文献   

15.
16.
Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology.  相似文献   

17.
昆虫仿生   总被引:1,自引:0,他引:1  
伍一军  陈瑞  李薇 《昆虫知识》2005,42(1):109-112
昆虫在长期进化过程中发展出与其生存环境相适应的器官系统,这些器官系统结构独特、功能优异,因而,昆虫一直是最重要的仿生对象之一。作者就昆虫仿生的进展及热点,如昆虫的形态仿生、体表微结构的仿生、感觉器官的仿生、运动功能的仿生以及其他特异能力的仿生进行了介绍。  相似文献   

18.
By its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems. We show that although prokaryotic and eukaryotic systems have a similar architecture, they profoundly differ in their overall cellular functions.  相似文献   

19.
Nikolaev VO 《Tsitologiia》2011,53(8):623-632
cAMP and cGMP are ubiquitous second messengers regulating a myriad of intracellular functions. Standard biochemical techniques to measure their levels in cells and tissues lack high temporal and any spatial resolution. To enable real-time monitoring of cAMP and cGMP in living cells and physiological systems, we and others have developed several biosensors based on fluorescence resonance energy transfer. This review will describe such novel techniques and discuss their application for various biological questions.  相似文献   

20.
High-affinity potassium and sodium transport systems in plants   总被引:20,自引:0,他引:20  
All living cells have an absolute requirement for K+, which must be taken up from the external medium. In contrast to marine organisms, which live in a medium with an inexhaustible supply of K+, terrestrial life evolved in oligotrophic environments where the low supply of K+ limited the growth of colonizing plants. In these limiting conditions Na+ could substitute for K+ in some cellular functions, but in others it is toxic. In the vacuole, Na+ is not toxic and can undertake osmotic functions, reducing the total K+ requirements and improving growth when the lack of K+ is a limiting factor. Because of these physiological requirements, the terrestrial life of plants depends on high-affinity K+ uptake systems and benefits from high-affinity Na+ uptake systems. In plants, both systems have received extensive attention during recent years and a clear insight of their functions is emerging. Some plant HAK transporters mediate high-affinity K+ uptake in yeast, mimicking K+ uptake in roots, while other members of the same family may be K+ transporters in the tonoplast. In parallel with the HAK transporters, some HKT transporters mediate high-affinity Na+ uptake without cotransporting K+. HKT transporters have two functions: (i) to take up Na+ from the soil solution to reduce K+ requirements when K+ is a limiting factor, and (ii) to reduce Na+ accumulation in leaves by both removing Na+ from the xylem sap and loading Na+ into the phloem sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号