首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardosins A and B are related aspartic proteinases from the pistils of Cynara cardunculus L., whose milk-clotting activity has been exploited for the manufacture of cheese. Here we report the cloning of cardosin B cDNA and its organ, tissue and cytological localization. The cDNA-derived amino acid sequence has 73% similarity with that of cardosin A and displays several distinguishing features. Cardosin B mRNA was detected in young inflorescences but not in pistils of fully opened inflorescences, indicating that its expression is developmentally regulated. The proteinase, however, accumulates in the pistil until the later stages of floral development. Immunocytochemistry with a monospecific antibody localized cardosin B to the cell wall and extracellular matrix of the floral transmitting tissue. The location of cardosin B in the pistil is therefore clearly different from that of cardosin A, which was found at protein storage vacuoles of the stigmatic papillae and has been suggested to be involved in RGD-mediated proteolytic mechanisms. In view of these results the possible functions of cardosin B in the transmitting tissue are discussed.  相似文献   

2.
In cardoon pistils, while cardosin A is detected in the vacuoles of stigmatic papillae, cardosin B accumulates in the extracellular matrix of the transmitting tissue. Given cardosins’ high homology and yet different cellular localisation, cardosins represent a potentially useful model to understand and study the structural and functional plasticity of plant secretory pathways. The vacuolar targeting of cardosin A was replicated in heterologous species so the targeting of cardosin B was examined in these systems. Inducible expression in transgenic Arabidopsis and transient expression in tobacco epidermal cells were used in parallel to study cardosin B intracellular trafficking and localisation. Cardosin B was successfully expressed in both systems where it accumulated mainly in the vacuole but it was also detected in the cell wall. The glycosylation pattern of cardosin B in these systems was in accordance with that observed in cardoon high-mannose-type glycans, suggesting that either the glycans are inaccessible to the Golgi processing enzymes due to cardosin B conformation or the protein leaves the Golgi in an early step before Golgi-modifying enzymes are able to modify the glycans. Concerning cardosin B trafficking pathway, it is transported through the Golgi in a RAB-D2a-dependent route, and is delivered to the vacuole via the prevacuolar compartment in a RAB-F2b-dependent pathway. Since cardosin B is secreted in cardoon pistils, its localisation in the vacuoles in cardoon ovary and in heterologous systems, suggests that the differential targeting of cardosins A and B in cardoon pistils results principally from differences in the cells in which these two proteins are expressed.  相似文献   

3.
Cardosin A is an abundant aspartic proteinase from pistils of Cynara cardunculus L. whose milk-clotting activity has been exploited for the manufacture of cheese. Here we report the cloning and characterization of cardosin A cDNA. The deduced amino acid sequence contains the conserved features of plant aspartic proteinases, including the plant-specific insertion (PSI), and revealed the presence of an Arg-Gly-Asp (RGD) motif, which is known to function in cell surface receptor binding by extracellular proteins. Cardosin A mRNA was detected predominantly in young flower buds but not in mature or senescent pistils, suggesting that its expression is likely to be developmentally regulated. Procardosin A, the single chain precursor, was found associated with microsomal membranes of flower buds, whereas the active two-chain enzyme generated upon removal of PSI is soluble. This result implies a role for PSI in promoting the association of plant aspartic proteinase precursors to cell membranes. To get further insights about cardosin A, the functional relevance of the RGD motif was also investigated. A 100-kDa protein that interacts specifically with the RGD sequence was isolated from octyl glucoside pollen extracts by affinity chromatography on cardosin A-Sepharose. This result suggests that the 100-kDa protein is a cardosin A receptor and indicates that the interaction between these two proteins is apparently mediated through RGD recognition. It is possible therefore that cardosin A may have a role in adhesion-mediated proteolytic mechanisms involved in pollen recognition and growth.  相似文献   

4.
Cardosin A is an aspartic protease present in large amount in the pistils of cardoon flowers. This protease is known to contain an -Arg-Gly-Asp- (RGD) motif located on the molecular surface. In this study, we found that isolated recombinant cardosin A attached to human epithelial cells A549, mediated by the binding of its RGD motif to cell surface integrins. The cell bound cardosin A was internalized to endosomes and lysosomes and triggered the permeability of lysosomal membrane leading to apoptosis of the epithelial cells. These events are identical to those observed for three RGD-containing aspartic proteases, Saps 4-6, secreted by Candida albicans. Such a process, which has been called the Trojan Horse mechanism, is believed to benefit the invasion of C. albican into the epithelium of the host. The location of the RGD motifs of cardosin A and Saps 4-6 are on the opposite ends of the homologous three-dimensional structures, suggesting that the Trojan Horse mechanism is insensitive to the RGD position. Current finding also suggests that cardosin A may have a defensive function against the ingestion of cardoon flowers by human, insects, and other herbivores.  相似文献   

5.
Cardosin A and cardosin B are two aspartic proteases mainly found in the pistils of cardoon Cynara cardunculus L., whose flowers are traditionally used in several Mediterranean countries in the manufacture of ewe's cheese. We have been characterizing cardosins at the biochemical, structural and molecular levels. In this study, we show that the cardoon aspartic proteases are encoded by a multigene family. The genes for cardosin A and cardosin B, as well as those for two new cardoon aspartic proteases, designated cardosin C and cardosin D, were characterized, and their expression in C. cardunculus L. was analyzed by RT-PCR. Together with cardosins, a partial clone of the cyprosin B gene was isolated, revealing that cardosin and cyprosin genes coexist in the genome of the same plant. As a first approach to understanding what dictates the flower-specific pattern of cardosin genes, the respective gene 5' regulatory sequences were fused with the reporter beta-glucuronidase and introduced into Arabidopsis thaliana. A subsequent deletion analysis of the promoter region of the cardosin A gene allowed the identification of a region of approximately 500 bp essential for gene expression in transgenic flowers. Additionally, the relevance of the leader intron of the cardosin A and B genes for gene expression was evaluated. Our data showed that the leader intron is essential for cardosin B gene expression in A. thaliana. In silico analysis revealed the presence of potential regulatory motifs that lay within the aforementioned regions and therefore might be important in the regulation of cardosin expression.  相似文献   

6.
7.
The flowers of cardoon (genus Cynara) are traditionally used in Portugal for cheese making. In this work the vegetable rennet of the species Cynara cardunculus L. was characterized in terms of enzymic composition and proteolytic specificity of its proteinases (cardosin A and cardosin B). Cardosin A was found to cleave insulin B chain at the bonds Leu15-Tyr16, Leu17-Val18 and Phe25-Tyr26. In addition to the bonds mentioned cardosin B cleaves also Glu13-Ala14, Ala14-Leu15 and Phe24-Phe25 indicating that it has a broader specificity. The kinetic parameters for the hydrolysis of the synthetic peptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-oMe were also determined and compared to those of chymosin and pepsin. The results obtained indicate that in terms of specificity and kinetic parameters cardosin A is similar to chymosin whereas cardosin B is similar to pepsin. It appears therefore that the enzyme composition of cardoon rennet closely resembles that of calf rennet.  相似文献   

8.
Duarte P  Pissarra J  Moore I 《Planta》2008,227(6):1255-1268
Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2a mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well‐known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant‐specific insert (PSI) and the C–terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.  相似文献   

10.
Summary. Following on from previous work, the temporal and spatial accumulation of the aspartic proteinases (EC 3.4.23) cardosin A and cardosin B during postembryonic seed development of cardoon (Cynara cardunculus) was studied. mRNA and protein analyses of both cardosins suggested that the proteins accumulate during seed maturation, and that cardosin A is later synthesised de novo at the time of radicle emergence. Immunocytochemistry revealed that the precursor form of cardosin A accumulates in protein bodies and cell walls. This localisation in seeds is different from that previously described for cardoon flowers, suggesting a tissue-dependent targeting of the protein. It is known that procardosins are active and may have a role in proteolysis and processing of storage proteins. However, the presence of procardosin A in seeds could be related to the proposed role of the plant-specific insert in membrane lipid conversion during water uptake and solute leakage in actively growing tissues. This is in accordance with the recently proposed bifunctional role of aspartic proteinase precursor molecules that possess a membrane-destabilising domain in addition to a protease domain. Mature cardosin B, but not its mRNA, was detected in the first hours after seed imbibition and disappeared at the time of radicle emergence. This extracellular aspartic protease has already been implicated in cell wall loosening and remodelling, and its role in seed germination could be related to loosening tissue constraints for radicle protusion. The described pattern of cardosin A and B expression suggests a finely tuned developmental regulation and prompts an analysis of their possible roles in the physiology of postembryonic development. Correspondence: C. S. Pereira, Institute for Molecular and Cell Biology, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.  相似文献   

11.
Cynara cardunculus is a native plant with flowers that are used traditionally in the manufacture of ewe’s cheese in the Iberian Peninsula. Milk clotting ability of the plant is attributed to the high concentrations of aspartic proteinases (APs), named cardosins, found in the flowers. Although these enzymes are well characterised on a molecular and biochemical basis, the biological role of the majority of plant APs is yet unassigned. We suspected APs play an important role in ovule function, and we characterised the maturation of the ovules of C. cardunculus and its Polygonum-type embryo sacs. The internal layer of the integument differentiates into an endothelium as described for other Asteraceae, with differentiation of two nucellar layers, a podium and a hypostase coinciding with the onset of pollen receptivity. In flowering plants, programmed cell death (PCD) events are essential for the success of nucellar maturation and consequent differentiation of a fully functional embryo sac. In C. cardunculus, nucellar PCD is integral to the maturation of the embryo sac, which in turn is closely correlated with the accumulation of the AP cardosin B specifically in the hypostase. The onset of cardosin B expression temporally coincides with the degeneration of nucellar cells. In fully mature embryo sacs, cardosin B is localised in both the hypostase and epistase, two regions that differentiate through PCD. Thus, cardosin B localisations closely correlate with events of PCD in the nucellus of C. cardunculus suggesting involvement in ovule and embryo sac development and further suggest the biological significance of APs like cardosin B, in this particular process. This work contributes new data to the plant AP research field and indicates an involvement of cardosin B in the PCD-dependent degeneration of the nucellus.  相似文献   

12.
Yagisawa F  Nishida K  Kuroiwa H  Nagata T  Kuroiwa T 《Planta》2007,226(4):1017-1029
Cyanidioschyzon merolae is considered as a suitable model system for studies of organelle differentiation, proliferation and partitioning. Here, we have identified and characterized vacuoles in this organism and examined the partitioning of vacuoles using fluorescence and electron microscopy. Vacuoles were stained with the fluorescent aminopeptidase substrate 7-amino-4-chloromethylcoumarin l-arginine amide, acidotrophic dyes quinacrine and LysoTracker, and 4′,6-diamidino-2-phenyl indole, which, at a high concentration, stains polyphosphate. Vacuoles have been shown to be approximately 500 nm in diameter with a mean of around five per interphase cell. The vacuolar H+-ATPase inhibitor concanamycin A blocked the accumulation of quinacrine in the vacuoles, suggesting the presence of the enzyme on these membranes. Electron microscopy revealed that the vacuoles were single membrane-bound organelles with an electron-dense substance, often containing a thick layer surrounding the membrane. Immunoelectron microscopy using an anti-vacuolar-H+-pyrophosphatase antibody revealed the presence of the enzyme on these membranes. In interphase cells, vacuoles were distributed in the cytoplasm, while in mitotic cells they were localized adjacent to the mitochondria. Filamentous structures were observed between vacuoles and mitochondria. Vacuoles were distributed almost evenly to daughter cells and redistributed in the cytoplasm after cytokinesis. The change in localization of vacuoles also happened in microtubule-disrupted cells. Since no actin protein or filaments have been detected in C. merolae, this result suggests an intrinsic mechanism for the movement of vacuoles that differs from commonly known mechanisms mediated by microtubules and actin filaments.  相似文献   

13.
Cardosins are model plant aspartic proteases, a group of proteases that are involved in cell death events associated with plant senescence and stress responses. They are synthesized as single-chain zymogens, and subsequent conversion into two-chain mature enzymes is a crucial step in the regulation of their activity. Here we describe the activation and proteolytic processing of recombinant procardosin A. The cleavage sites involved in this multi-step autocatalytic process were determined, some of them using a novel method for C-terminal sequence analysis. Even though the two-chain recombinant enzyme displayed similar properties as natural cardosin A, a single-chain mutant form was engineered based on the processing results and produced in Escherichia coli. Determination of its primary specificity using two combinatorial peptide libraries revealed that this mutant form behaved like the natural enzyme. The primary specificity of the enzyme closely resembles those of cathepsin D and plasmepsins, suggesting that cardosin A shares the same peptide scissile bond preferences of its vacuolar/lysosomal mammalian and protozoan homologues.  相似文献   

14.
Conformational and functional changes of cardosin A, an aspartic protease of vegetal origin, in the presence of 2,2,2-trifluoroethanol (TFE), were assessed. TFE induced alterations of cardosin activity and conformation that differed with the solvent concentration. MD simulations showed that there are significant local alterations in protein flexibility and TFE molecules were found to replace several hydration molecules in the active site of the enzyme. This may explain some of the activity loss observed in the presence of TFE, especially at low TFE concentrations, as well as the recovery of enzyme activity upon aqueous dilution, indicating the release of the TFE molecules from the active site.  相似文献   

15.
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine. This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis, peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC–MS/MS analysis on a Q-TRAP instrument. All four enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO2)AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin A, exhibits different specificity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Cyanoalanine hydratase (E.C. 4.2.1.65) is an enzyme involved in the cyanide detoxification pathway of higher plants and catalyzes the hydrolysis of β-cyano-l-alanine to asparagine. We have isolated the enzyme from seedlings of blue lupine (Lupinus angustifolius) to obtain protein sequence information for molecular cloning. In contrast to earlier reports, extracts of blue lupine cotyledons were found also to contain cyanoalanine-nitrilase (E.C. 3.5.5.4) activity, resulting in aspartic acid production. Both activities co-elute during isolation of cyanoalanine hydratase and are co-precipitated by an antibody directed against Arabidopsis thaliana nitrilase 4 (NIT4). The isolated cyanoalanine hydratase was sequenced by nanospray-MS/MS and shown to be a homolog of Arabidopsis thaliana and Nicotiana tabacum NIT4. Full-length cDNA sequences for two NIT4 homologs from blue lupine were obtained by PCR using degenerate primers and RACE-experiments. The recombinant LaNIT4 enzymes, like Arabidopsis NIT4, hydrolyze cyanoalanine to asparagine and aspartic acid but show a much higher cyanoalanine-hydratase activity. The two nitrilase genes displayed differential but overlapping expression. Taken together these data show that the so-called ‘cyanoalanine hydratase’ of plants is not a bacterial type nitrile hydratase enzyme but a nitrilase enzyme which can have a remarkably high nitrile-hydratase activity.  相似文献   

17.
The kinetics of the structural changes affecting cardosin A, a plant aspartic proteinase (AP) from Cynara cardunculus L., in the presence of a mixture of acetonitrile (AN) in water (W) was studied. Incubation of cardosin A with 10% (v/v) AN resulted in a gradual increase in protein helicity, accompanied by changes in the tertiary structure, seen by changes in the intrinsic fluorescence of tryptophan. Differential scanning calorimetry (DSC) revealed that the temperature of denaturation of cardosin A decreased upon the addition of AN. With longer incubation times, the small chain of cardosin A denatured completely, consequent exposure of the single tryptophan residue accounting well for the observed spectral shift intrinsic fluorescence of the protein. Enzymatic activity assays demonstrated that the kinetically determined unfolding of the small chain of cardosin A does not result in loss of the activity of this enzyme.  相似文献   

18.
A cathepsin D-like aspartic proteinase (EC 3.4.23) is abundant in ungerminated barley ( Hordeum vulgare ) seed while a 30 kDa cysteine endoproteinase (EC 3.4.22) is one of the proteinases synthesized de novo in the germinating seed. In this work, the localization of these two acid proteinases was studied at both the tissue and subcellular levels by immunomicroscopy. The results confirm that they have completely different functions. The aspartic proteinase was present in the ungerminated seed and, during germination, it appeared in all the living tissues of the grain, including the shoot and root. Contrary to previous suggestions, it was not observed in the starchy endosperm. By immunoblotting, the high molecular mass form of the enzyme (32 + 16 kDa) was found in all the living tissues, whereas the low molecular mass form (29 + 11 kDa) was not present in the shoot or root, indicating that the two enzyme forms have different physiological roles. The aspartic proteinase was localized first in the scutellar protein bodies of germinating seed, and later in the vacuoles which are formed by fusion of the protein bodies. In contrast to the aspartic proteinase, the expression of the 30 kDa cysteine proteinase began during the first germination day, and it was secreted into the starchy endosperm; first from the scutellum and later from the aleurone layer. It was not found in either shoots or roots. The 30 kDa cysteine proteinase was detected in the Golgi apparatus and in the putative secretory vesicles of the scutellar epithelium. These results suggest that the aspartic proteinase functions only in the living tissues of the grain, as opposed to the 30 kDa cysteine proteinase which is apparently one of the proteases initiating the hydrolysis of storage proteins in the starchy endosperm.  相似文献   

19.
Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5′- and 3′-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe–2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.  相似文献   

20.
The immunocytochemical localization of cathepsin E, a non-lysosomal aspartic proteinase, was investigated in rat osteoclasts using the monospecific antibody to this protein. At the light-microscopic level, the preferential immunoreactivity for cathepsin E was found at high levels in active osteoclasts in the physiological bone modeling process. Neighboring osteoblastic cells were devoid of its immunoreactivity. At the electron-microscopic level, cathepsin E was exclusively confined to the apical plasma membrane at the ruffled border of active osteoclasts and the eroded bone surface. Cathepsin E was also concentrated in some endocytotic vacuoles of various sizes in the vicinity of the ruffled border membrane, some of which appeared to be secondary lysosomes containing the phagocytosed materials. These results strongly suggest that this enzyme is involved both in the extracellular degradation of the bone organic matrix and in the intracellular breakdown of the ingested substances in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号