首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PPARgamma is highly expressed in granulosa cells by 23 days post-partum (pp) and is down-regulated in response to the LH surge. We tested the hypothesis that high levels of FSH during the neonatal period trigger the expression of PPARgamma. To determine when PPARgamma expression is initiated, ovaries were collected from neonatal rats. Messenger RNA for PPARgamma was undetectable on day 1, low from days 5-14, and increased by day 19 pp (p < 0.05). PPARgamma was detected in select granulosa cells in primary/early secondary follicles. Messenger RNA for the FSH receptor was detected as early as day 1 and remained steady throughout day 19 pp. The FSH receptor was detected by immunoblot analysis in ovaries collected 1, 2, and 5-9 days pp. In a subsequent experiment, neonatal rats were treated with acyline (GnRH antagonist) which significantly reduced FSH (p < 0.05) but not levels of mRNA for PPARgamma. The role of FSH in the induction of PPARgamma expression was further assessed in ovarian tissue from FORKO mice. Both mRNA and protein for PPARgamma were identified in ovarian tissue from FORKO mice. In summary, the FSH/FSH receptor system is present in granulosa cells prior to the onset of expression of PPARgamma. Reducing FSH during the neonatal period, or the ability to respond to FSH, did not decrease expression of mRNA for PPARgamma. These data indicate that FSH is not a primary factor initiating the expression of PPARgamma and that other agents play a role in activating its expression in the ovary.  相似文献   

2.
A series of novel indene N-oxide derivatives were prepared by various synthetic methods and evaluated for their ability to activate PPARgamma. The best PPARgamma agonist in this series was 9h, which showed an EC(50) value of 15 nM.  相似文献   

3.
Activation of peroxisome proliferator activated receptor (PPAR)alpha and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARalpha ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARalpha activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARalpha ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARalpha knockout (KO) mice compared with its wild type (WT) litter mates (130+/-10 mmHg versus 107+/-4 mmHg). L-NAME (100mg/L p.o.), the inhibitor of NO production abolished the difference between PPARalpha KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8+/-1.4 pM/mg versus 8.3+/-0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46+/-6%, p<0.05) and a approximately 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARalpha WT compared with the KO mice. Clofibrate, a PPARalpha ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19+/-4%, p<0.05), increased urinary NO excretion (4.06+/-0.53-7.07+/-1.59 microM/24 h; p<0.05) and reduced plasma 8-isoprostane level (45.8+/-15 microM versus 31.4+/-8 microM), and NADP(H) oxidase activity (16+/-5%). Implantation of DOCA pellet (20mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193+/-13 mmHg versus 130+/-12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARalpha activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

4.
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans.  相似文献   

5.
Cerebral inflammatory events play an important part in the pathogenesis of Alzheimer's disease (AD). Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor that mediates anti-inflammatory actions of non-steroidal anti-inflammatory drugs (NSAIDs) and thiazolidinediones, have been therefore proposed as a potential treatment of AD. Experimental evidence suggests that cortical noradrenaline (NA) depletion due to degeneration of the locus ceruleus (LC) - a pathological hallmark of AD - plays a permissive role in the development of inflammation in AD. To study a possible relationship between NA depletion and PPARgamma-mediated suppression of inflammation we investigated the influence of NA on PPARgamma expression in murine primary cortical astrocytes and neurons. Incubation of astrocytes and neurons with 100 micro m NA resulted in an increase of PPARgamma mRNA as well as PPARgamma protein levels in both cell types. These effects were blocked by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phentolamine, suggesting that they might be mediated by beta-adrenergic receptors. Our results indicate for the first time that PPARgamma expression can be modulated by the cAMP signalling pathway, and suggest that the anti-inflammatory effects of NA on brain cells may be partly mediated by increasing PPARgamma levels. Conversely, decreased NA due to LC cell death in AD may reduce endogenous PPARgamma expression and therefore potentiate neuroinflammatory processes.  相似文献   

6.
7.
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.  相似文献   

8.
Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). l-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p < 0.05) and a 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53–7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

9.
A series of 1,4-benzyloxybenzylsulfanylaryl carboxylic acids were prepared and their activities for PPAR receptor subtypes (alpha, delta, and gamma) with potential indications for the treatment of dyslipidemia were investigated. Analog 13a displayed the greatest binding affinity (IC(50)=10nM) and selectivity (120-fold) for PPARdelta over PPARalpha. Many of the analogs investigated were found to be highly selective for PPARdelta and were dependent on the point of attachment of the substituent. In the 1,4-series, analog 28e was found to be the most potent (IC(50)=1.7 nM) and selective (>1000-fold) compound for PPARdelta. None of the compounds tested showed appreciable binding affinity for PPARgamma.  相似文献   

10.
11.
The PPAR gamma agonists, thiazolidinediones (TZDs), have anti-inflammatory properties as well as increasing insulin sensitivity. This has widened their therapeutic scope to treat inflammatory diseases such as atherosclerosis in addition to Type 2 Diabetes. TZDs are known to reduce monocyte/macrophage expression of Matrix metalloproteinase (MMP)-9, which is implicated in atherosclerotic plaque destabilization. This study aims to identify other metalloproteinase genes of the ADAM (A Disintegin And Metalloproteinase) and ADAMTS families that are regulated by PPAR gamma or RXR agonists, which are potentially important in type 2 diabetes and/or related atherosclerosis. The synthetic PPAR gamma agonist, GW7845, and the natural agonist 15d-PGJ2, suppressed PMA stimulated MMP-9 in human monocyte-like cells (THP-1) only in the presence of 9-cis-retinoic acid. Quantitative Real-Time PCR showed that this reduction was regulated at the mRNA level. Expression of ADAMs 8, 9, and 17 were increased, and ADAM15 was decreased by stimulation of THP-1 with PMA, although these ADAMs were not regulated by PPAR gamma or RXR agonists. PMA-induced ADAM28 expression was further enhanced by the addition of 9-cis-retinoic acid. ADAMTS4, implicated in rheumatoid arthritis, was expressed in THP-1 cells, and significantly increased after 24 h of PMA stimulation. ADAMTS4 expression was suppressed by both PPAR gamma and RXR agonists and was undetectable when the agonists were combined. Pretreatment of THP-1 cells with the PPAR gamma antagonist, GW9662, suggests that PPAR gamma plays subtly different roles in the regulation of MMP-9, ADAMTS4 and ADAM28 gene expression. These results indicate that PPAR gamma and RXR agonists have complex effects on monocyte metalloproteinase expression, which may have implications for therapeutic strategies.  相似文献   

12.
The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  相似文献   

13.
14.
15.
16.
Peroxisome proliferators are potent rodent liver carcinogens that act via a non-genotoxic mechanism. The mode of action of these agents in rodent liver includes increased cell proliferation, decreased apoptosis, secondary oxidative stress and other events; however, it is not well understood how peroxisome proliferators are triggering the plethora of the molecular signals leading to cancer. Epigenetic changes have been implicated in the mechanism of liver carcinogenesis by a number of environmental agents. Short-term treatment with peroxisome proliferators and other non-genotoxic carcinogens leads to global and locus-specific DNA hypomethylation in mouse liver, events that were suggested to correlate with a burst of cell proliferation. In the current study, we investigated the effects of long-term exposure to a model peroxisome proliferator WY-14,643 on DNA and histone methylation. Male SV129mice were fed a control or WY-14,643-containing (1000ppm) diet for one week, five weeks or five months. Treatment with WY-14,643 led to progressive global hypomethylation of liver DNA as determined by an HpaII-based cytosine extension assay with the maximum effect reaching over 200% at five months. Likewise, trimethylation of histone H4 lysine 20 and H3 lysine 9 was significantly decreased at all time points. The majority of cytosine methylation in mammals resides in repetitive DNA sequences. In view of this, we measured the effect of WY-14,643 on the methylation status of major and minor satellites, as well as in IAP, LINE1 and LINE2 elements in liver DNA. Exposure to WY-14,643 resulted in a gradual loss of cytosine methylation in major and minor satellites, IAP, LINE1 and LINE2 elements. The epigenetic changes correlated with the temporal effects of WY-14,643 on cell proliferation rates in liver, but no sustained effect on c-Myc promoter methylation was observed. Finally, WY-14,643 had no effect on DNA and histone methylation status in Pparalpha-null mice at any of the time points considered in this study. These data indicate the importance of epigenetic alterations in the mechanism of action of peroxisome proliferators and the key role of Pparalpha.  相似文献   

17.
18.
In order to identify the critical structural feature(s) of phenylpropanoic acid-type PPARalpha agonists, such as KCL, which exhibit human peroxisome proliferator-activated receptor alpha (PPARalpha)-selective activation, transient transactivation assay of KCL and related derivatives was performed with PPARalpha containing wild-type and point-mutated (I272F or T279M) ligand-binding domain. The results indicated that the interaction of the distal hydrophobic tail part of KCL and related derivatives with amino acid residue 272 (isoleucine) in the helix three region of PPARalpha is of primary importance for human-selective PPARalpha activation.  相似文献   

19.
PPARs are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation and cell differentiation. This spectrum of biological activities stimulated pharmacological research to synthetize different molecules with PPARs binding activity with beneficial therapeutic effects. As a matter of fact, some synthetic PPAR-ligands have been already employed in pharmacotherapy: PPAR-alpha ligands, such as fibrates, are used in hyperlipidemias and thiazolidinediones, mainly PPAR-gamma ligands, are employed as insulin sensitizers. However, both classes of drugs showed pharmacotoxicological profiles which cannot be fully ascribed to activation of their specific receptors and which are causing a growing incidence of dramatic side effects (rhabdomyolysis, acute liver failure, heart failure, etc.). A re-evaluation of the biological activities of PPAR synthetic ligands, in particular of the mitochondrial dysfunction based on a rotenone-like Complex I partial inhibition and of its consequent metabolic adaptations, seems to explain some of the pathophysiologic aspects of PPARs allowing a better definition of the therapeutic properties of the so-called PPAR-ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号