首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (<125 g/m(2); mean = 76 g/m(2)) but are high for gymnosperm species (>240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.  相似文献   

2.
The classic leaf fossil floras from the Cretaceous of the Lusitanian Basin, Portugal, which were first described more than one hundred years ago, have played an important role in the development of ideas on the early evolution of angiosperms. Insights into the nature of vegetational change in the Lusitanian Basin through the Cretaceous have also come from studies of fossil pollen and spores, but the discovery of a series of mesofossil floras containing well-preserved angiosperm reproductive structures has provided a new basis for understanding the systematic relationships and biology of angiosperms at several stratigraphic levels through the Cretaceous. In the earliest mesofossil floras from the Torres Vedras locality, which are of probable Late Barremian-Early Aptian age, angiosperms are surprisingly diverse with about 50 different taxa. In slightly later mesofossil floras, which are of probable Late Aptian-Early Albian age, the diversity of angiosperms is still more substantial with more than hundred different kinds of angiosperm reproductive structures recognized from the Famalicão locality alone. However, this early diversity is largely among angiosperm lineages that produced monoaperturate pollen (e.g., Chloranthaceae, Nymphaeales) and early diverging monocots (Alismatales). Eudicots are rare in these Early Cretaceous mesofossil floras, but already by the Late Cenomanian the vegetation of the western Iberian Peninsula is dominated by angiosperms belonging to various groups of core eudicots. The Normapolles complex is a particularly conspicuous element in both mesofossil floras and in palynological assemblages. In the Late Cretaceous mesofossil floras from Esgueira and Mira, which are of Campanian-Maastrichtian age, core eudicots are also floristically dominant and flowers show great organisational similarity to fossil flowers from other Late Cretaceous floras described from other localities in Asia, Europe and North America.  相似文献   

3.
Interplate dispersal paths for megathermal angiosperms   总被引:1,自引:0,他引:1  
The dispersal of megathermal angiosperms between tectonic plates is reviewed on the basis of fossil evidence for the Cretaceous and Tertiary periods, since the radiation of the angiosperms, and the period of break-up of Gondwana. The combination of tectonic plate disassembly and redistribution, coupled with phases of global warming followed by pronounced cooling, has resulted in the formation of intermittent dispersal opportunities for frost-intolerant plants, and has been a major factor in determining the direction of angiosperm diversification. The Early Cretaceous radiation of angiosperms seems to show little relationship to the formation of Tethys. However, for the Late Cretaceous and Tertiary nine relevant dispersal routes can be differentiated that can be divided into two distinct categories: routes which formed following the break-up of Gondwana during the Late Cretaceous and Earlier Tertiary, when warm climates encouraged dispersal of megathermal elements globally, and routes which formed since the Middle Eocene, following phases of plate collision, as global climates were cooling down, inhibiting such dispersal. Most inter-plate dispersal of megathermal angiosperms took place in the Late Cretaceous and Early Tertiary at a time when global climates were markedly different from those of today, and the global area of megathermal vegetation several times greater than at present. Under such a scenario, it is likely than opportunities for speciation were much higher than for present-day megathermal plants.  相似文献   

4.
Mesozoic plants and the problem of angiosperm ancestry   总被引:1,自引:0,他引:1  
Krassilov, V.: Mesozoic plants and the problem of angiosperm ancestry.
Trends leading to the foliar and floral structures of angiosperms may be deduced by comparison with Mesozoic gymnosperms. The Debeya-Fontainea group of Cretaceous angiosperms closely resembles the Early Mesozoic Scoresbya group of pteridosperms with regard to leaf characters. The bivalved capsules of Jurassic Leptostrobus , with stigmatic bands, are regarded as the forerunners of certain types of angiosperm carpels. The angiospermous characters arose in several lineages of gymnosperms and were probably accumulated by non-sexual transfer of genetic material. The earliest angiosperm mega- and microfossils have been reported from the Middle and Upper Jurassic of the northern hemisphere. Most of these angiosperms were confined to chaparral-like communities dominated by shrubby conifers and cycadophytes. The rise of angiosperms was promoted by the climatic changes and the simultaneous rise of mammals.  相似文献   

5.
Genome duplication and the origin of angiosperms   总被引:9,自引:0,他引:9  
Despite intensive research, little is known about the origin of the angiosperms and their rise to ecological dominance during the Early Cretaceous. Based on whole-genome analyses of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for the creation of many important developmental and regulatory genes found in extant angiosperm genomes. Here, we argue that these ancient polyploidy events might have also had an important role in the origin and diversification of the angiosperms.  相似文献   

6.
7.
Although aquatic plants are discussed as a unified biological group, they are phylogenetically well dispersed across the angiosperms. In this study, we annotated the aquatic taxa on the tree of vascular plants, and extracted the topology of these aquatic lineages to construct the tree of aquatic angiosperms. We also reconstructed the ancestral areas of aquatic families. We found that aquatic angiosperms could be divided into two different categories: the four aquatic orders and the aquatic taxa in terrestrial orders. Aquatic lineages evolved early in the radiation of angiosperms, both in the orders Nymphaeales and Ceratophyllales and among basal monocots (Acorales and Alismatales). These aquatic orders do not have any extant terrestrial relatives. They originated from aquatic habitats during the Early Cretaceous. Asia would have been one of the centers for early diversification of aquatic angiosperms. The aquatic families within terrestrial orders may originate from other areas besides Asia, such as America or Australia. The lineages leading to extant angiosperms diversified early in underexploited freshwater habitats. The four extant aquatic orders were relicts of an early radiation of angiosperm in aquatic environments. Their extinct ancestors might be aquatic early angiosperms.  相似文献   

8.
In the second half of the nineteenth century, pioneering discoveries of rich assemblages of fossil plants from the Cretaceous resulted in considerable interest in the first appearance of angiosperms in the geological record. Darwin''s famous comment, which labelled the ‘rapid development’ of angiosperms an ‘abominable mystery’, dates from this time. Darwin and his contemporaries were puzzled by the relatively late, seemingly sudden and geographically widespread appearance of modern-looking angiosperms in Late Cretaceous floras. Today, the early diversification of angiosperms seems much less ‘rapid’. Angiosperms were clearly present in the Early Cretaceous, 20–30 Myr before they attained the level of ecological dominance reflected in some mid-Cretaceous floras, and angiosperm leaves and pollen show a distinct pattern of steadily increasing diversity and complexity through this interval. Early angiosperm fossil flowers show a similar orderly diversification and also provide detailed insights into the changing reproductive biology and phylogenetic diversity of angiosperms from the Early Cretaceous. In addition, newly discovered fossil flowers indicate considerable, previously unrecognized, cryptic diversity among the earliest angiosperms known from the fossil record. Lineages that today have an herbaceous or shrubby habit were well represented. Monocotyledons, which have previously been difficult to recognize among assemblages of early fossil angiosperms, were also diverse and prominent in many Early Cretaceous ecosystems.  相似文献   

9.
《Palaeoworld》2008,17(2):142-152
The important question of early angiosperm growth habit (i.e., trees, shrubs or herbs?) remains unanswered. Various theories have been based on data from both living and fossil plants. The Early Cretaceous fossil wood record, however, was seldom used to investigate early angiosperm habit. We set up a database for the Early Cretaceous and Cenomanian of Europe, as this area has the most complete and stratigraphically well-constrained record. The database has 170 entries, based on a bibliographical survey and on the examination of more than 600 new fossil wood specimens from a wide range of palaeoenvironments. In our record the woody characteristic in angiosperms appeared during the Albian, whereas most of the angiosperm's early evolution took place earlier, during the earliest Cretaceous. From the European fossil wood record for the Early Cretaceous and Cenomanian, the global extension and dominance of angiosperms in the Cenomanian is concomitant with a sharp increase in heteroxylous wood diversity. It appears that small stature and weak wood limited the angiosperm ecological radiation for some time.  相似文献   

10.
One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.  相似文献   

11.
Did dinosaurs invent flowers? Dinosaur—angiosperm coevolution revisited   总被引:1,自引:0,他引:1  
Angiosperms first appeared in northern Gondwana during the Early Cretaceous, approximately 135 million years ago. Several authors have hypothesised that the origin of angiosperms, and the tempo and pattern of their subsequent radiation, was mediated by changes in the browsing behaviour of large herbivorous dinosaurs (sauropods and ornithischians). Moreover, the taxonomic and ecological radiation of angiosperms has been associated with the evolution of complex jaw mechanisms among ornithischian dinosaurs. Here, we review critically the evidence for dinosaur-angiosperm interactions during the Cretaceous Period, providing explicit spatiotemporal comparisons between evolutionary and palaeoecological events in both the dinosaur and angiosperm fossil records and an assessment of the direct and indirect evidence for dinosaur diets. We conclude that there are no strong spatiotemporal correlations in support of the hypothesis that dinosaurs were causative agents in the origin of angiosperms; however, dinosaur-angiosperm interactions in the Late Cretaceous may have resulted in some coevolutionary interactions, although direct evidence of such interactions is scanty at present. It is likely that other animal groups (insects, arboreal mammals) had a greater impact on angiosperm diversity during the Cretaceous than herbivorous dinosaurs. Elevated levels of atmospheric CO2 might have played a critical role in the initial stages of the angiosperm radiation.  相似文献   

12.
孙启高 《生态学报》2001,21(4):653-659
陆地植物的起源和演化与全球气候环境存在着密不可分的关系,而且地质历史时期全球气候环境和植被均呈动态变化,被子植物在白垩纪开始出现,并发生强烈分化,成为植物界的主宰,对这全球陆地生态系统的演化格局和过程产生重要影响,大量保存在地层中具有叶相特征的被子植物叶化石对认识这一过程提供了极为重要的生物学信息,简述了利用被子植物的叶相对古气候,古地理等进行定量分析的研究历史,“气候与叶片多变量分析程序”(Climate-Leaf Analysis Multivariate Program CLAMP)颇具特色,运用CLAMP在定量解释古气候等方面可以得到准确而精确的结果,这对定量重建晚白垩世以来全球陆地气候环境变化的格局与过程具有十分重要的意义,并对今后的深入研究作了展望。  相似文献   

13.
BACKGROUND AND AIMS: At the beginning of the Late Cretaceous, angiosperms already inhabited all the environments and overtopped previously gymnosperm-dominated floras, especially in disturbed freshwater-related environments. The aim of this paper is to define what fossil plant ecology occurred during the early Cretaceous in order to follow the early spread of angiosperm taxa. METHODS: Floristic lists and localities from the Barremian to the Albian of Europe are analysed with the Wagner's Parsimony Method. KEY RESULTS: The Wagner's Parsimony Method indicates that (a) during the Barremian, matoniaceous ferns formed a savannah-like vegetation, while angiosperms composed freshwater aquatic vegetation; (b) during the Late Aptian humid phase, conifers increased, while matoniaceous ferns decreased, reflecting the closure of the vegetation; and (c) from the Albian, warmer and drier conditions induced the recovery of the matoniaceous ferns, while core angiosperms first developed in floodplains. CONCLUSIONS: During the late Early Cretaceous (Barremian-Albian), angiosperms showed a stepwise widening of their ecological range, being recorded first during the Barremian as aquatic plant mega-remains and at the Cenomanian onwards occurred in all the environments.  相似文献   

14.
最近吴征镒等发表的被子植物“多系_多期_多域”的“八纲”新分类系统,是以该系 统作者自己人为截取早白垩世时间横断面并认为在这个横断面上存在8条主传代线为基础建 立的。“八纲系统”在祖先式样及其起源时间和地点方面缺乏证据,各主传代线相互之间及 其与被子植物共同祖先的关系也基本没有说明。由于没有接受植物系统发育重建研究中共同 遵守的共同祖先原理,而且混淆使用了“单系”和“多系”的概念,可以认为“八纲 系统”是人为性很强的被子植物分类系统。  相似文献   

15.
Abstract

Burmese amber is an extremely important source of mid-Cretaceous plant and animal remains with over 870 species of organisms, ranging from protozoa to vertebrates, described from this source. The amber mines are located on the West Burma Block that according to geologists was originally part of Gondwana. The present study introduces some angiosperms and insects in Burmese amber whose closest extant relatives have a Gondwanan distribution and there is no previous evidence of a Laurasian distribution. Based on this evidence, it is proposed that organisms in Burmese amber represent a selection of tropical to subtropical life forms that inhabited the interconnected continents of Gondwana in the Early Cretaceous. Based on the fossil record of angiosperms and their diversity in Burmese amber, the West Burma Block could not have rafted from Gondwana to SE Asia before the Early Cretaceous.  相似文献   

16.
Temporary mining is a peculiar behavioral trait in leaf parasites requiring adaptations of consecutive larval stages to the endophytic and ectophytic life. The first fossil evidence for the origin of the trait comes from the Cretaceous (Turonian) plant–insect locality of the Negev Desert containing rich trace assemblages of leaf parasites, including blotch mines with leaf pieces cut out for case construction, as well as attached larval cases. The host plants are deciduous broadleafs or aquatic angiosperms with emergent leaves, suggesting that initial acquisition of the habit might have been related to leaf abscission and the risk for the larva being chocked in the mine during floods. Unlike tracks of permanent miners, temporary mines never co‐occur on leaves with other type mines, which attests to their effect of enhancing plant resistance. Mine predation appears to have been widespread in the Cretaceous biotic community, suggesting a possibility of top‐down regulation of mining habits at this early stage of their evolutionary development.  相似文献   

17.
Four new genera and six new species of fossil seed (Buarcospermum tetragonium, Lignierispermum maroneae, Lobospermum glabrum, L. rugosum, L. stampanonii, Rugonella trigonospermum) are described from five Early Cretaceous mesofossil floras from Portugal and eastern North America. The four genera are distinguished by differences in size, shape, and details of seed anatomy, but all are unusual in having an outer seed envelope with a distinctive anatomical structure that surrounds the nucellus and the integument. The integument is extended apically into a long, narrow micropylar tube. The four new genera are part of a diverse, but previously unrecognized, complex of extinct plants that was widespread in Early Cretaceous vegetation and that coexisted in similar habitats with early angiosperms. The distinctive structure of these seeds, and the strong similarities to other fossil seeds (Ephedra, Ephedripites, Erdtmanispermum, Raunsgaardispermum, and some Bennettitales) already known from the Early Cretaceous, suggests that this newly recognized complex of extinct plants, together with Bennettitales, Erdtmanithecales, and Gnetales (the BEG group), is phylogenetically closely related.  相似文献   

18.
Some critical comments are made on the “Eight-Classs System” of the classification of angiosperms recently proposed by Wu et al., which the aut hors claimed to be a “polyphyletic-polytopic” system. This system is established based on the hypothesis that there have existed eight principal lineages of angiosperms by the end of the Early Cretaceous. However, this hypothesis has not been supported by any neobotanical and paleobotanical evidence. There lationship among the eight lineages and their relationship with the common ances tor of angiosperms are not clearly clarified in the system. Having failed to follow the principle of common ancestry in the reconstruction of angiosperm phylogeny and having misinterpreted the concepts of monophyly and polyphyly, the “Eight-Class System” of the classification of angiosperms is considered to be an artificial one.  相似文献   

19.
A new lignitised, slightly compressed pollen organ, Erdtmanitheca portucalensis, with affinities to extinct Erdtmanithecales from the Early Cretaceous (Aptian–Albian) of Vale de Água (Lusitanian Basin, western Portugal), is described. The pollen organ is composed of loosely arranged microsporophylls radiating from a central core. The estimated number of microsporophylls is about 100–150. The microsporophylls are sessile and ellipsoidal to barrel-shaped with a flattened or slightly apically depression containing about ten narrow sporangia. The sporangia enclose abundant well-preserved pollen grains of Eucommiidites-type. Pollen grains found in situ are elliptical in equatorial outline, about 16.0–27.2 μm long and 11.9–16.4 μm wide. The main (distal) colpus is long with expanded rounded ends. It is flanked by two subsidiary colpi in an almost equatorial position. The surface of the pollen wall is psilate and occasionally punctate. The ektexine is composed of a distinct tectum, granular infratectal layer and a thin foot layer. The endexine is thick and laminar. The new Early Cretaceous Portuguese pollen-organ is similar in several respects to that of Erdtmanitheca texensis described from the Late Cretaceous of Texas, USA. The new fossil species further documents the importance of the Bennettitales-Erdtmanithecales-Gnetales group in the Early Cretaceous floras of Portugal extending the stratigraphic and geographical distribution of the genus with regard to systematic and phylogenetic significance of the Eucommiidites-producing plants that may have been co-occurring with the Early Cretaceous diversification of angiosperms. It is ascertained that perforate tectum occurs in pollen grains with a well-developed foot layer as well as in pollen grains in which a foot layer is poorly developed or lacking, and that pollen features do not support a separation of the Erdtmanithecales seeds and pollen organs.  相似文献   

20.
This paper deals with evolution, classification and pollen morphology of the Hamamelidaceae, an important family in phylogeny of angiosperms. I. Pollen morphology and systematics of modern Hamamelidaceae. The pollen morphology of the family may be divided into the following four types: (1) Tricolpate: Hamamelis, Loropetalum, Mytilaria, Corylopsis, Sysopsis, and Distylum etc.; (2) Tricolpate with operculum: Disanthus; (3) Tricolporate: Rhodoleia; (4) Pantoporate: Liquidambar. The tricolpate pollen of the Hamamelidaceae is a primitive type in angiosperms, but the most ancient type is monocolpate pollen. Therefore, the family might have evolved from the Magnoliaceae of the monocolpate pollen. The pantoporate pollen is an evolutionary type in the family. It might have evolved from the tricolpate pollen. II.The fossil pollen of the Hamamelidaceae 1 .General introduction of the fossil pollen of the family Hamamelidaceae The most’ancient fossil pollen belonging to the family was found in the middle-late Early Cretaceous. Palynologists call the fossil pollen of the Hamamelidaceae Retitricolpites, which consists of three genera: Hamamelis L.,Corylopsis Sieb. et Zucc and Fothergilla Murr. Liquidambar is of an advanced type in the fossil pollen of the Hamamelidaceae. It was found in the period from the Palaeogene to the Neogene in China. 2. The geological history of the Hamamelidaceae may be divided into the following four stages: (A) The Early Cretaceous stage or origination stage. The family may be evolved from Magnoliales in the middle-late Early Cretaceous. (B)the Late Cretaceous stage or formation stage. The family is much developed in the period. (C) The Tertiary stage or development stage. The family was a much developed one among angiosperms. (D)The Neogene to modern stage or perfection stage. The evolutionary type, the Liquidambar type of the Hamamelidaceae, was much developed in the Neogene. III. The palaeopalynological evidence of evolution of the Hamamelidaceae The earliest fossil pollen of angiosperms was found in the Barremian (Early Cretaceous) in England, Israel, the United States of America etc., and was named as Clavatipollenites by Couper (1953). In recent years, Clavatipollenites was also found in the middle-late Early Cretaceous in Nei Monggol and Jiangxi Province of China. We also found Retitricolpites in the middle-late Early Cretaceous in Nei Monggol and Jiangxi Province. Retitricolpites, belonging to the Hamamelidaceae, is a primitive type among angiosperms, but it is younger than Clavatipollenites. Therefore, the pollen of Hamamelidaceae may have evoloved fromClavatipollenites, which may have evoloved in turn from that of Magnoliales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号