首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A checkpoint operating in the G(2) phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G(2) checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G(2) checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G(2) checkpoint abrogation by UCN-01.  相似文献   

2.
We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.  相似文献   

3.
Mitotic checkpoints restrain the onset of mitosis (M) when DNA is incompletely replicated or damaged. These checkpoints are conserved between the fission yeast Schizosaccharomyces pombe and mammals. In both types of organisms, the methylxanthine caffeine overrides the synthesis (S)-M checkpoint that couples mitosis to completion of DNA S phase. The molecular target of caffeine was sought in fission yeast. Caffeine prevented activation of Cds1 and phosphorylation of Chk1, two protein kinases that enforce the S-M checkpoint triggered by hydroxyurea. Caffeine did not inhibit these kinases in vitro but did inhibit Rad3, a kinase that regulates Cds1 and Chk1. In accordance with this finding, caffeine also overrode the G(2)-M DNA damage checkpoint that requires Rad3 function. Rad3 coprecipitated with Cds1 expressed at endogenous amounts, a finding that supports the hypothesis that Rad3 is involved in direct activation of Cds1.  相似文献   

4.
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.  相似文献   

5.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

6.
Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216. Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus after exposure of cells to gamma-radiation. Prior treatment of cells with 2 mM caffeine inhibits such a change and markedly reduces radiation-induced ataxia-telangiectasia-mutated (ATM)-dependent Chk2/Cds1 activation and phosphorylation. Chk2/Cds1 is known to localize in the nucleus and to phosphorylate Cdc25C at serine 216 in vitro. Caffeine does not inhibit Chk2/Cds1 activity directly, but rather, blocks the activation of Chk2/Cds1 by inhibiting ATM kinase activity. In vitro, ATM phosphorylates Chk2/Cds1 at threonine 68 close to the N terminus, and caffeine inhibits this phosphorylation with an IC(50) of approximately 200 microM. Using a phospho-specific antibody against threonine 68, we demonstrate that radiation-induced, ATM-dependent phosphorylation of Chk2/Cds1 at this site is caffeine-sensitive. From these results, we propose a model wherein caffeine abrogates the G(2)/M checkpoint by targeting the ATM-Chk2/Cds1 pathway; by inhibiting ATM, it prevents the serine 216 phosphorylation of Cdc25C in the nucleus. Inhibition of ATM provides a molecular explanation for the increased radiosensitivity of caffeine-treated cells.  相似文献   

7.
The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened for genes in Schizosaccharomyces pombe that, when overexpressed, result in precocious mitotic entry in the presence of DNA damage. We show that overexpression of the type I protein phosphatase Dis2 sensitises S. pombe cells to DNA damage, causing aberrant mitoses. Dis2 abrogates Chk1 phosphorylation and activation in vivo, and dephosphorylates Chk1 and a phospho-S345 Chk1 peptide in vitro. dis2Delta cells have a prolonged chk1-dependent arrest and a compromised ability to downregulate Chk1 activity for checkpoint release. These effects are specific for the DNA damage checkpoint, because Dis2 has no effect on the chk1-independent response to stalled replication forks. We propose that inactivation of Chk1 by Dis2 allows mitotic entry following repair of DNA damage in the G2-phase.  相似文献   

8.
9.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

10.
The protein kinase Chk1 enforces the DNA damage checkpoint. This checkpoint delays mitosis until damaged DNA is repaired. Chk1 regulates the activity and localization of Cdc25, the tyrosine phosphatase that activates the cdk Cdc2. Here we report that Mik1, a tyrosine kinase that inhibits Cdc2, is positively regulated by the DNA damage checkpoint. Mik1 is required for checkpoint response in strains that lack Cdc25. Long-term DNA damage checkpoint arrest fails in Δmik1 cells. DNA damage increases Mik1 abundance in a Chk1-dependent manner. Ubiquitinated Mik1 accumulates in a proteasome mutant, which indicates that Mik1 normally has a short half-life. Thus, the DNA damage checkpoint might regulate Mik1 degradation. Mik1 protein and mRNA oscillate during the unperturbed cell cycle, with peak amounts detected around S phase. These data indicate that regulation of Mik1 abundance helps to couple mitotic onset to the completion of DNA replication and repair. Coordinated negative regulation of Cdc25 and positive regulation of Mik1 ensure the effective operation of the DNA damage checkpoint.  相似文献   

11.
Although it is well established that Cdc2 kinase phosphorylates the DNA damage checkpoint protein Crb253BP1 in mitosis, the full impact of this modification is still unclear. The Tudor-BRCT domain protein Crb2 binds to modified histones at DNA lesions to mediate the activation of Chk1 by Rad3ATR kinase. We demonstrate here that fission yeast cells harbouring a hyperactive Cdc2CDK1 mutation (cdc2.1w) are specifically sensitive to the topoisomerase 1 inhibitor camptothecin (CPT) which breaks DNA replication forks. Unlike wild-type cells, which delay only briefly in CPT medium by activating Chk1 kinase, cdc2.1w cells bypass Chk1 to enter an extended cell-cycle arrest which depends on Cds1 kinase. Intriguingly, the ability to bypass Chk1 requires the mitotic Cdc2 phosphorylation site Crb2-T215. This implies that the presence of the mitotic phosphorylation at Crb2-T215 channels Rad3 activity towards Cds1 instead of Chk1 when forks break in S phase. We also provide evidence that hyperactive Cdc2.1w locks cells in a G1-like DNA repair mode which favours non-homologous end joining over interchromosomal recombination. Taken together, our data support a model such that elevated Cdc2 activity delays the transition of Crb2 from its G1 to its G2 mode by blocking Srs2 DNA helicase and Casein Kinase 1 (Hhp1).  相似文献   

12.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

13.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

14.
The S-M checkpoint is an intracellular signaling pathway that ensures that mitosis is not initiated in cells undergoing DNA replication. We identified cid1, a novel fission yeast gene, through its ability when overexpressed to confer specific resistance to a combination of hydroxyurea, which inhibits DNA replication, and caffeine, which overrides the S-M checkpoint. Cid1 overexpression also partially suppressed the hydroxyurea sensitivity characteristic of DNA polymerase delta mutants and mutants defective in the "checkpoint Rad" pathway. Cid1 is a member of a family of putative nucleotidyltransferases including budding yeast Trf4 and Trf5, and mutation of amino acid residues predicted to be essential for this activity resulted in loss of Cid1 function in vivo. Two additional Cid1-like proteins play similar but nonredundant checkpoint-signaling roles in fission yeast. Cells lacking Cid1 were found to be viable but specifically sensitive to the combination of hydroxyurea and caffeine and to be S-M checkpoint defective in the absence of Cds1. Genetic data suggest that Cid1 acts in association with Crb2/Rhp9 and through the checkpoint-signaling kinase Chk1 to inhibit unscheduled mitosis specifically when DNA polymerase delta or epsilon is inhibited.  相似文献   

15.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

16.
Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.  相似文献   

17.
Chk1 kinase, a DNA damage/replication G2 checkpoint kinase, has recently been shown to phosphorylate and inhibit Cdc25C, a Cdc2 Tyr-15 phosphatase, thereby directly linking the G2 checkpoint to negative regulation of Cdc2. Immature Xenopus oocytes are arrested naturally at the first meiotic prophase (prophase I) or the late G2 phase, with sustained Cdc2 Tyr-15 phosphorylation. Here we have cloned a Xenopus homolog of Chk1, determined its developmental expression, and examined its possible role in prophase I arrest of oocytes. Xenopus Chk1 protein is expressed at approximately constant levels throughout oocyte maturation and early embryogenesis. Overexpression of wild-type Chk1 in oocytes prevents the release from prophase I arrest by progesterone. Conversely, specific inhibition of endogenous Chk1 either by overexpression of a dominant-negative Chk1 mutant or by injection of a neutralizing anti-Chk1 antibody facilitates prophase I release by progesterone. Moreover, when ectopically expressed in oocytes, a Chk1-nonphosphorylatable Cdc25C mutant alone can induce prophase I release much more efficiently than wild-type Cdc25C; if endogenous Chk1 function is inhibited, however, even wild-type Cdc25C can induce the release very efficiently. These results suggest strongly that Chk1 is involved in physiological prophase I arrest of Xenopus oocytes via the direct phosphorylation and inhibition of Cdc25C. We discuss the possibility that Chk1 might function either as a G2 checkpoint kinase or as an ordinary cell cycle regulator in prophase-I-arrested oocytes.  相似文献   

18.
Chk1, a nuclear DNA damage/replication G2 checkpoint kinase, phosphorylates Cdc25 and causes its nuclear exclusion in yeast and mammalian cells, thereby arresting the cell at the G2 phase until DNA repair/replication is completed. Chk1 is also involved, at least in part, in the natural G2 arrest of immature Xenopus oocytes, but it is unknown how Chk1 inhibits Cdc25 function and undergoes regulation during oocyte maturation. By using enucleated oocytes, we show here that Chk1 inhibits Cdc25 function in the cytoplasm of G2-arrested oocytes and that Cdc25 is activated exclusively in the cytoplasm of maturing oocytes. Moreover, we show that Chk1 activity is not appreciably altered during maturation, being maintained at basal levels, and that C-terminal truncation mutants of Chk1 have very high kinase activities, strong abilities to inhibit maturation, and altered subcellular localization in oocytes. These results, together with other results, suggest that the Chk1/Cdc25 pathway is involved cytoplasmically in G2 arrest of Xenopus oocytes, but moderately and independent of the G2 checkpoint, and that the C-terminal region of Chk1 negatively regulates its kinase activity and also determines its subcellular localization. Based on these results, we discuss the possibility that Chk1 (with the basal activity) may function as an ordinary regulator of Cdc25 in oocytes (and in other cell types) and that Chk1 might be hyperactivated in response to the G2 checkpoint via its dramatic conformational change.  相似文献   

19.
Fission yeast Cds1 is phosphorylated and activated when DNA replication is interrupted by nucleotide starvation or DNA damage. Cds1 enforces the S-M checkpoint that couples mitosis (M) to the completion of DNA synthesis (S). Cds1 also controls replicational stress tolerance mechanisms. Cds1 is regulated by a group of proteins that includes Rad3, a kinase related to human checkpoint kinase ATM (ataxia telangiectasia mutated). ATM phosphorylates serine or threonine followed by glutamine (SQ or TQ). Here we show that in vitro, Rad3 and ATM phosphorylate the N-terminal domain of Cds1 at the motif T(11)Q(12). Substitution of threonine-11 with alanine (T11A) abolished Cds1 activation that occurs when DNA replication is inhibited by hydroxyurea (HU) treatment. The cds1-T11A mutant was profoundly sensitive to HU, although not quite as sensitive as a cds1(-) null mutant. Cds1(T11A) was unable to enforce the S-M checkpoint. These results strongly suggest that Rad3-dependent phosphorylation of Cds1 at threonine-11 is required for Cds1 activation and function.  相似文献   

20.
In vertebrate cells Chk1 is essential for multiple checkpoint responses to acute DNA damage or replication blocks, however potential functions for Chk1 during unperturbed cell cycles have remained less well characterised. In the past few years a role for Chk1 in timing the onset of mitosis in the absence of exogenous perturbations via regulation of Cdc25 family phosphatases has been documented. Furthermore, a recent report shows that Chk1 is also required for the spindle checkpoint which protects against spontaneous chromosome mis-segregation during mitotic cell division. Specifically, Chk1 is required for proper regulation of the mitotic Aurora-B kinase which ensures that anaphase proceeds only once all kinetochores have achieved bipolar attachment to microtubules and are under tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号