首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 1 毫秒
1.
We used confocal microscopy in conjunction with specific antibodies and enhancer trap strains to investigate the development of specific neuronal connections in a simple model system, the larval visual system of Drosophila. We find that the establishment of axonal projections from the larval photoreceptor neurons to their central nervous system targets involves a series of discrete steps. During embryogenesis, the larval optic nerve contacts several different cell types, including optic lobe pioneer (OLP) neurons and a number of glial cells. We demonstrate that OLP neurons are present and project normally in glass (gl) mutant embryos in which the larval optic nerve fails to develop, suggesting that they do not depend on interactions with the larval optic nerve for differentiation and proper axonal projection. The OLPs fail to differentiate properly in disconnected (disco) mutant embryos, where appropriate connections between the larval optic nerve and its targets in the brain are not formed. The disco gene is expressed in the OLPs and may therefore act autonomously to direct the differentiation of these cells. Taken together, our results suggest that the OLPs act as an intermediate target required for the establishment of normal optic nerve projection and connectivity. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

3.
Oxidative stress, characterized by overproduction of reactive oxygen species (ROS), is a major feature of several pathological states. Indeed, many cancers and neurodegenerative diseases are accompanied by altered redox balance, which results from dysregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this review, we consider the role of the intracellular chloride channel 1 (CLIC1) in microglial cells during oxidative stress. Following microglial activation, CLIC1 translocates from the cytosol to the plasma membrane where it promotes a chloride conductance. The resultant anionic current balances the excess charge extruded by the active NADPH oxidase, supporting the generation of superoxide by the enzyme. In this scenario, CLIC1 could be considered to act as both a second messenger and an executor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号