首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J D House  S B March  S Ratnam  E Ives  J T Brosnan  J K Friel 《CMAJ》2000,162(11):1557-1559
BACKGROUND: Newfoundland has one of the highest rates of neural tube defects in North America. Given the association between low maternal folic acid levels and neural tube defects, a cross-sectional study was conducted to obtain base-line data on the folate and vitamin B12 status of a sample of women in Newfoundland who were pregnant. METHODS: Blood samples were collected between August 1996 and July 1997 from 1424 pregnant women in Newfoundland during the first prenatal visit (at approximately 16 weeks'' gestation); this represented approximately 25% of the women in Newfoundland who were pregnant during this period. The samples were analysed for serum folate, vitamin B12, red blood cell folate and homocysteine. RESULTS: Median values for serum folate, red blood cell folate and serum vitamin B12 were 25 nmol/L, 650 nmol/L and 180 pmol/L, respectively. On the basis of the interpretive criteria used for red blood cell folate status, 157 (11.0%) of the 1424 women were deficient (< 340 nmol/L) and a further 180 (12.6%) were classified as indeterminate (340-420 nmol/L). Serum homocysteine levels, measured in subsets of the red blood cell folate status groups, supported the inadequate folate status. Serum vitamin B12 levels of 621 (43.6%) women were classified as deficient or marginal; however, the validity of the interpretive criteria for pregnant women is questionable. INTERPRETATION: A large proportion of pregnant women surveyed in Newfoundland in 1997 had low red blood cell folate levels.  相似文献   

2.
Numerous studies have reported a relationship between folate status, the methylenetetrahydrofolate reductase (MTHFR) 677C-->T variant and disease risk. Although folate and choline metabolism are inter-related, only limited data are available on the relationship between choline and folate status in humans. This study sought to examine the influences of folate intake and the MTHFR 677C-->T variant on choline status. Mexican-American women (n=43; 14 CC, 12 CT and 17 TT) consumed 135 microg/day as dietary folate equivalents (DFE) for 7 weeks followed by randomization to 400 or 800 microg DFE/day for 7 weeks. Throughout the study, total choline intake remained unchanged at approximately 350 mg/day. Plasma concentrations of betaine, choline, glycerophosphocholine, phosphatidylcholine and sphingomyelin were measured via LC-MS/MS for Weeks 0, 7 and 14. Phosphatidylcholine and sphingomyelin declined (P=.001, P=.009, respectively) in response to folate restriction and increased (P=.08, P=.029, respectively) in response to folate treatment. The increase in phosphatidylcholine occurred in response to 800 (P=.03) not 400 (P=.85) microg DFE/day (week x folate interaction, P=.017). The response of phosphatidylcholine to folate intake appeared to be influenced by MTHFR C677T genotype. The decline in phosphatidylcholine during folate restriction occurred primarily in women with the CC or CT genotype and not in the TT genotype (week x genotype interaction, P=.089). Moreover, when examined independent of folate status, phosphatidylcholine was higher (P<.05) in the TT genotype relative to the CT genotype. These data suggest that folate intake and the MTHFR C677T genotype influence choline status in humans.  相似文献   

3.
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The disturbances in body folate homeostasis such as intestinal malabsorption in alcoholism are well-known contributor to folate deficiency associated disorders. The study was sought to delineate the kinetic features of folate transport in intestinal absorptive epithelium that could highlight insights of malabsorption during alcoholism. We studied [3H]-folic acid transport in intestinal brush border membrane (BBM) after 3 months of ethanol administration at 1 g/kg body weight/day to rats. The results showed that the folate transport exhibited saturable kinetics and was pH, Na+, temperature, divalent cation sensitive, besides –SH group(s) was/were found important in the folate transport system to be efficiently operative. Importantly, the decreased intestinal BBM folate transport in chronic alcoholism was associated with increased K m and decreased V max during alcoholism. In addition, S–S group status of the transporter and presence of Na+ at the absorptive site seems to be perturbed during ethanol ingestion. However, H+/folate coupled transport provided the driving force for transport as pH optimum in acidic range was not altered during alcoholism. The inhibition constants of methotrexate and unlabelled folic acid revealed that the two analogues are handled differently by the folate transport system. In addition, the low activity of folate transport system during chronic ethanol exposure was associated with low RBC folate levels. Overall, these findings suggest that the deregulated folate transport kinetics might contribute to intestinal folate malabsorption in alcoholism.  相似文献   

4.
PURPOSE OF REVIEW: Inadequate folate status has been linked to risk of a wide range of adverse health conditions throughout life, from birth defects and complications of pregnancy to cardiovascular disease, cancer and cognitive dysfunction in the elderly. In many instances these risks are manifested through elevated plasma homocysteine. This review focuses on current research into the contribution of genetic variability to folate status and disease predisposition. RECENT FINDINGS: Some dozen potentially important polymorphisms in folate-related genes have been examined for disease associations or for their role in determining the level of plasma homocysteine. In most instances, the effects are either modest, not significant, or undetectable. However, the mechanism by which the 677C-->T variant of methylenetetrahydrofolate reductase determines homocysteine status has become clearer with the elucidation of a critical role for riboflavin in modulating the plasma homocysteine of TT homozygotes. Moreover, several new metaanalyses have confirmed an association of this variant with vascular disease, probably through low folate status and elevated plasma homocysteine. SUMMARY: There are enormous difficulties in attempting to assess the contribution of minor genetic variability to nutrient status, against major background differences due to ethnicity, age, gender, lifestyle, dietary habits and disease status. Nevertheless, this is an important goal in the future management of chronic multifactorial disease. The present research into the genetic components of folate and homocysteine variability is paving the way towards an eventual capacity to ensure optimal folate status in every individual and, consequently, to reduce their risk of developing such diseases.  相似文献   

5.
Most cellular folates carry a short poly-γ-glutamate tail, and this tail is believed to affect their efficacy and stability. The tail can be removed by γ-glutamyl hydrolase (GGH; EC 3.4.19.9), a vacuolar enzyme whose role in folate homeostasis remains unclear. In order to probe the function of GGH, we modulated its level of expression and subcellular location in Arabidopsis plants and tomato fruit. Three-fold overexpression of GGH in vacuoles caused extensive deglutamylation of folate polyglutamates and lowered the total folate content by approximately 40% in Arabidopsis and tomato. No such effects were seen when GGH was overexpressed to a similar extent in the cytosol. Ablation of either of the major Arabidopsis GGH genes (AtGGH1 and AtGGH2) alone did not significantly affect folate status. However, a combination of ablation of one gene plus RNA interference (RNAi)-mediated suppression of the other (which lowered total GGH activity by 99%) increased total folate content by 34%. The excess folate accumulated as polyglutamate derivatives in the vacuole. Taken together, these results suggest a model in which: (i) folates continuously enter the vacuole as polyglutamates, accumulate there, are hydrolyzed by GGH, and exit as monoglutamates; and (ii) GGH consequently has an important influence on polyglutamyl tail length and hence on folate stability and cellular folate content.  相似文献   

6.
Whole blood folate level is a superior indicator of folate nutritional status than serum/plasma level. Problems with and lack of confidence in results of current whole blood folate assays have limited its popularity for assessing folate nutritional status. Here, an acid extraction GCMS detection method that measures total folate whole blood is presented. Folates are released from the matrix of whole blood and cleaved to para-aminobenzoic acid (pABA) by acid hydrolysis in the presence of [(13)C(6)]pABA as internal standard (IS). The hydrolysate is passed over a C18 resin to remove heme. The pABA isotopomers are ethyl esterified, isolated on C18 resin, and trifluoroacetylated. Following normal-phase HPLC separation, the isotopomers are silylated to their tBDMS derivatives. The abundance of these derivatives are measured at m/z 324 for [(13)C(6)]pABA as IS and m/z 318 for pABA from whole blood folate. Our method uses readily available chemicals and our results agree well with those using Lactobacillus casei, the current gold standard reference assay. The presence of folate analogs (methotrexate) or antibacterials (sulfonamines) does not affect our method. This feature makes it useful in monitoring folate status of patients undergoing chemotherapy. Before using our method, pABA supplements must be discontinued for a few days.  相似文献   

7.
Wani NA  Hamid A  Kaur J 《IUBMB life》2008,60(12):834-842
Folate is the generic term for compounds that have vitamin activity similar to that of pteroylglutamic acid. Folate acts as a coenzyme in several single carbon transfers involved in biosynthesis of purine nucleotides and deoxythymidylic acid essential for DNA and RNA synthesis. In addition, folate provides one-carbon unit for methylation of a wide variety of biological substances including DNA, proteins, phospholipids, and neurotransmitters, thereby regulating their function. Recent epidemiological-clinical and experimental studies suggest the association of folate deficiency with the risk of various cancers, birth defects, and cardiovascular diseases. Thus, it is important to consider the conditions that are associated with altered folate status and their consequences. The impairment in folate status has been found in number of pathophysiological conditions like inflammatory bowel disease, cancer, alcoholism, pregnancy, neonatal growth, and during administration of some drugs. The recent advances dealing with mechanistic aspects of impaired folate status in these conditions have been discussed in this review.  相似文献   

8.
Since its discovery in 1931 by Lucy Wills, and its first isolation in 1941 by Mitchell, Snell and Williams, our understanding of the fascinating world of folic acid and one-carbon metabolism, and its role in health and disease, has come a long way. However, there is still much to do in perfecting methods to measure folate bioavailability, and status, with a high degree of precision and accuracy. Future examination of the relationships of common gene polymorphims involved in folate bioavailability (folate polyglutamate deconjugation and carrier-mediated absorption) and one-carbon metabolism (methylation cycle, folate cycle and DNA synthesis/repair) to folate status, morbidity, mortality and longevity, need to be considered concurrently rather than as a series of individual associations, as has been the usual practice. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

10.
BACKGROUND : Suboptimal maternal folate status is considered a risk factor for neural tube defects (NTDs). However, the relationship between dietary folate status and risk of NTDs appears complex, as experimentally induced folate deficiency is insufficient to cause NTDs in nonmutant mice. In contrast, folate deficiency can exacerbate the effect of an NTD‐causing mutation, as in splotch mice. The purpose of the present study was to determine whether folate deficiency can induce NTDs in mice with a permissive genetic background which do not normally exhibit defects. METHODS : Folate deficiency was induced in curly tail and genetically matched wild‐type mice, and we analyzed the effect on maternal folate status, embryonic growth and development, and frequency of NTDs. RESULTS : Folate‐deficient diets resulted in reduced maternal blood folate, elevated homocysteine, and a diminished embryonic folate content. Folate deficiency had a deleterious effect on reproductive success, resulting in smaller litter sizes and an increased rate of resorption. Notably, folate deficiency caused a similar‐sized, statistically significant increase in the frequency of cranial NTDs among both curly tail (Grhl3 mutant) embryos and background‐matched embryos that are wild type for Grhl3. The latter do not exhibit NTDs under normal dietary conditions. Maternal supplementation with myo‐inositol reduced the incidence of NTDs in the folate‐deficient wild‐type strain. CONCLUSIONS : Dietary folate deficiency can induce cranial NTDs in nonmutant mice with a permissive genetic background, a situation that likely parallels gene‐nutrient interactions in human NTDs. Our findings suggest that inositol supplementation may ameliorate NTDs resulting from insufficient dietary folate. Birth Defects Research (Part A), 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Genetic determinants of folate status in Central Bohemia   总被引:1,自引:0,他引:1  
Although several genetic factors have been implicated as determinants of blood folate concentration in various populations, their effect on folate status in the Czech population has not yet been examined. We explored whether blood folate concentrations in healthy Czech population are associated with polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR), folate hydrolase 1 (FOLH1), reduced folate carrier (RFC), and folate receptor (FOLR1) genes. In a cross-sectional study of 591 control subjects we determined genotypes by PCR-RFLP or ARMS-PCR methods, and plasma and erythrocyte folates by MEIA. The effect of different genotypes on folate status was examined by non-parametric tests and by regression analysis. The prevalence of the MTHFR 677C>T, MTHFR 1298A>C, FOLH1 1561C>T, RFC 80G>A and FOLR1 480G>C variant alleles was 0.34, 0.33, 0.05, 0.44 and 0.00, respectively. Only the MTHFR 677C>T variant was significantly associated with plasma folate concentrations (median 14.7, 14.0 and 12.2 nmol/l for the CC, CT and TT genotypes, respectively). Our study showed that among the five studied allelic variants, only the 677C>T polymorphism in the MTHFR gene is a significant genetic determinant of plasma folate concentrations in Czech population.  相似文献   

12.
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3'UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment.  相似文献   

13.
The effectiveness of additional food folate in improving folate status in humans is uncertain particularly in people with the common genetic variant (677 C-->T) in the methylenetetrahydrofolate reductase (MTHFR) gene. To examine the effect of a doubling of food folate consumption on folate status response variables, women (n=32; 18-46 years) with the MTHFR 677 CC or TT genotype consumed either 400 (n=15; 7 CC and 8 TT) or 800 (n=17; 8 CC and 9 TT) microg/day of dietary folate equivalents (DFE) derived exclusively from naturally occurring food folate for 12 weeks. A repeated measures two-factor ANOVA was used to examine the effect of the dietary treatment, the MTHFR C677T genotype and their interactions on serum folate, RBC folate and plasma total homocysteine (tHcy) during the last 3 weeks of the study. Consumption of 800 microg DFE/day resulted in serum folate concentrations that were 67% (P=.005) higher than consumption of 400 microg DFE/day (18.6+/-2.9 vs. 31.0+/-2.7 nmol/L, respectively) and RBC folate concentrations that were 33% (P=.001) higher (1172+/-75 vs. 1559+/-70 nmol/L, respectively). Serum folate (P=.065) and RBC folate (P=.022) concentrations were lower and plasma tHcy was higher (P=.039) in women with the MTHFR 677 TT genotype relative to the CC genotype. However, no genotype by dietary treatment interaction was detected. These data suggest that a doubling of food folate intake will lead to marked improvements in folate status in women with the MTHFR 677 CC or TT genotype.  相似文献   

14.

Objective

To assess the status of the vitamin B12 and folate of Chinese women living in northwest China.

Methods

A population-based cross-sectional study was conducted in 2008 among Chinese women aged 10–49 years living in Shaanxi province of northwest China. A stratified multistage random sampling method was adopted to obtain a sample of 1170 women. The women were interviewed for collection of their background information and their plasma vitamin B12 and folate were measured with the immunoassay method. The status of both vitamins was evaluated and the prevalence of deficiency was estimated.

Results

The median value of the women was 214.5 pg/mL for vitamin B12 and 4.6 ng/mL for folate. The urban women had a significantly higher vitamin B12 (254.1 vs. 195.9 pg/mL) but lower folate (4.4 vs. 4.7 ng/mL) than rural women. Total prevalence of deficiency was 45.5% (95% CI: 42.6%∼48.4%) for vitamin B12 and 14.7% (95% CI: 12.6%∼16.8%) for folate. About 36% of women presented vitamin B12 deficiency alone, 5.2% belonged to folate deficiency alone and 9.5% was combined deficiency in both vitamins. More than 25% of the women were in marginal vitamin B12 status (200–299 pg/mL) and 60% in marginal status of folate (3–6 ng/mL). About 75.2% of rural women with folate deficiency were deficient in vitamin B12 and 46% for urban women. Quantile regression model found decreasing coefficient of folate status across 73 different quantiles of vitamin B12, which indicated that the women with folate deficiency had lower vitamin B12 significantly compared with those with no deficiency.

Conclusions

The deficiency of vitamin B12 and folate is still prevalent among the Chinese women in northwest China. Vitamin B12 deficiency could be more serious and the improvement of poor vitamin B12 status should be invoked when practicing the supplementation of folate against the neural tube defects in northwest China.  相似文献   

15.
BACKGROUND: Genetic variation in the folate metabolic pathway may influence the risk of congenital heart defects. This study was undertaken to assess the associations between the inherited and maternal genotypes for variants in folate‐related genes and the risk of a composite heart phenotype that included two component phenotypes: conotruncal heart defects (CTDs) and left‐sided cardiac lesions (LSLs). METHODS: Nine folate‐related gene variants were evaluated using data from 692 case‐parent triads (CTD, n = 419; LSL, n = 273). Log‐linear analyses were used to test for heterogeneity of the genotype‐phenotype association across the two component phenotypes (i.e., CTD and LSLs) and, when there was no evidence of heterogeneity, to assess the associations of the maternal and inherited genotypes with the composite phenotype. RESULTS: There was little evidence of heterogeneity of the genotype‐phenotype association across the two component phenotypes or of an association between the genotypes and the composite phenotype. There was evidence of heterogeneity in the association of the maternal MTR A2756G genotype (p = 0.01) with CTDs and LSLs. However, further analyses suggested that the observed associations with the maternal MTR A2756G genotype might be confounded by parental imprinting effects. CONCLUSIONS: Our analyses of these data provide little evidence that the folate‐related gene variants evaluated in this study influence the risk of this composite congenital heart defect phenotype. However, larger and more comprehensive studies that evaluate parent‐of‐origin effects, as well as additional folate‐related genes, are required to more fully explore the relation between folate and congenital heart defects. Birth Defects Research (Part A) 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Altered folate metabolism has been suggested as a possible reason for expression of the fragile X chromosome in low-folate medium. However, there were no significant differences in the total folate content or in the distribution of folate cofactors between fibroblasts from patients with the fragile X chromosome and those of controls both before and after a period of folate starvation. Fragile X and control fibroblasts lose folate at an equivalent rate. Insofar as folate content and distribution reflect a primary abnormality of folate metabolism, there appears to be no such abnormality in the fragile X syndrome.  相似文献   

17.
Neural tube defects (NTDs) refer to a cluster of neurodevelopmental conditions associated with failure of neural tube closure during embryonic development. Worldwide prevalence of NTDs ranges from approximately 0.5 to 60 per 10,000 births, with regional and population-specific variation in prevalence. Numerous environmental and genetic influences contribute to NTD etiology; accumulating evidence from population-based studies has demonstrated that folate status is a significant determinant of NTD risk. Folate-mediated one-carbon metabolism (OCM) is essential for de novo nucleotide biosynthesis, methionine biosynthesis, and cellular methylation reactions. Periconceptional maternal supplementation with folic acid can prevent occurrence of NTDs in the general population by up to 70%; currently several countries fortify their food supply with folic acid for the prevention of NTDs. Despite the unambiguous impact of folate status on NTD risk, the mechanism by which folic acid protects against NTDs remains unknown. Identification of the mechanism by which folate status affects neural tube closure will assist in developing more efficacious and better targeted preventative measures. In this review, we summarize current research on the relationship between folate status and NTDs, with an emphasis on linking genetic variation, folate nutriture, and specific metabolic and/or genomic pathways that intersect to determine NTD outcomes.  相似文献   

18.
BACKGROUND: Red blood cells (RBCs) represent a storage pool for folate. In contrast to plasma, RBC folate can appear in different biochemical isoforms. So far, only the methylenetetrahydrofolate reductase (MTHFR) 677 TT genotype has been identified as a determinant of RBC folate vitamer distribution. OBJECTIVE: The purpose of this study is to identify clinical and biochemical determinants of RBC folate vitamer distribution in healthy subjects. DESIGN: In an observational study, 109 subjects, aged 18 to 65 years, were studied. Red blood cell folate vitamers were analyzed using a liquid chromatography-tandem mass spectrometry method. Other variables recorded included vitamin B(2), B(6) and B(12) status, homocysteine, plasma and RBC S-adenosylhomocysteine and S-adenosylmethionine, renal function and the MTHFR C677T polymorphism. RESULTS: The MTHFR C677T genotype was the dominant determinant of nonmethylfolate accumulation. The median (range) nonmethylfolate/total folate ratio was 0.58% (0-12.2%) in the MTHFR CC group (n=55), 0.99% (0-14.3%) in the CT group (n=39) and 30.3% (5.7-73.3%) in the TT genotype group (n=15), P<.001. The 95th percentile for the nonmethylfolate/total folate ratio was 2.8% for the CC group, 9.1% for the CT group and 73.3% for the TT group. In the CC and CT genotype subjects, the T-allele and total folate status were positively and independently correlated with nonmethylfolate accumulation, but the degree of nonmethylfolate accumulation in these subjects was usually minor compared with those with the TT genotype. None of the other studied variables was associated with nonmethylfolate accumulation. CONCLUSIONS: The MTHFR C677T genotype is the dominant determinant of nonmethylfolate accumulation in RBCs. In addition, high total folate status may contribute to minor to moderate nonmethylfolate accumulation in MTHFR CC and CT subjects.  相似文献   

19.
A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the interaction between diabetes and methyl group metabolism. Rats were fed a diet containing deficient (0 ppm), adequate (2 ppm), or supplemental (8 ppm) folate for 30 days, after which diabetes was initiated in one-half of the rats by streptozotocin treatment. The activities of GNMT, phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine S-methyltransferase (BHMT) were increased about twofold in diabetic rat liver; folate deficiency resulted in the greatest elevation in GNMT activity. The abundance of GNMT protein and mRNA, as well as BHMT mRNA, was also elevated in diabetic rats. The marked hyperhomocysteinemia in folate-deficient rats was attenuated by streptozotocin, likely due in part to increased BHMT expression. These results indicate that a diabetic state profoundly modulates methyl group, choline, and homocysteine metabolism, and folate status may play a role in the extent of these alterations. Moreover, the upregulation of BHMT and PEMT may indicate an increased choline requirement in the diabetic rat.  相似文献   

20.
Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell lines derived from the normal human colon, HCEC, NCM356 and NCM460, were grown for 32–34 days in media containing 25, 50, 75 or 150 nM folic acid, and the expression of genes involved in cell-cycle checkpoints, intracellular signaling, folate uptake and cell adhesion and migration was determined. Expression of Folate Receptor 1 was increased with decreasing media folate in all cell lines, as was p53, p21, p16 and β-catenin. With decreasing folate, the expression of both E-cadherin and SMAD-4 was decreased in NCM356. APC was elevated in NCM356 but unchanged in the other lines. No changes in global methylation were detected. A significant increase in p53 exon 7–8 strand breaks was observed with decreasing folate in NCM460 cells. The changes observed are consistent with DNA damage-induced activation of cell-cycle checkpoints and cellular adaptation to folate depletion. Folate-depletion-induced changes in the Wnt/APC pathway as well as in genes involved in cell adhesion, migration and invasion may underlie observed relationships between folate status and cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号