首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.  相似文献   

2.
Results are presented from experimental studies of the dynamics of dust grains charged via photoemission under microgravity conditions. The experiments are performed with bronze grains exposed to solar radiation on board the Mir space station. The velocity distribution, temperature, mean charge, and friction and diffusion coefficients of dust grains are determined. An analysis of the data obtained shows that the polarization caused by the separation of opposite charges can significantly affect the transport processes in a two-component dusty plasma consisting of dust grains and the electrons emitted by them.  相似文献   

3.
Results of the experimental studies of the dynamics of dust grains in the plasmas of an rf capacitive discharge and a dc glow discharge are presented. The dusty plasma of a dc glow discharge was investigated in both ground-based experiments and experiments carried out under microgravity conditions (on board the Mir space station). The pair correlation function, temperature, and diffusion coefficient of dust grains are measured in a wide range of the dusty-plasma parameters. Dimensionless parameters responsible for the microscopic transport of dust-grains in a gas-discharge plasma are determined. A nonintrusive diagnostic technique for determining the dust-grain charges and screening lengths under the assumption of screened interaction between the grains is proposed. This technique is used to estimate the surface potential of dust grains of different size in a gas-discharge plasma.  相似文献   

4.
5.
The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.  相似文献   

6.
The problem of the evolution of a perturbation in a dusty plasma and its transformation into a nonlinear wave structure is considered. A computational method that allows one to solve the set of nonlinear evolutionary equations describing variable-charge dust grains, Boltzmann electrons, and inertial ions is developed. Exact steady-state solutions corresponding to ion-acoustic shock structures associated with anomalous dissipation originating from dust grain charging are found taking into account the effect of electron and ion charge separation. The role of this effect increases with the speed of the shock. The evolutions of an initial soliton (which is a steady-state wave solution in a plasma containing dust grains with a constant charge) and an initially immobile perturbation with a constant increased ion density are investigated. In a charge-varying dusty plasma, the soliton evolves into a nonsteady shock wave structure that propagates at a constant speed and whose amplitude decreases with time. The initially immobile perturbation with a constant increased ion density evolves into a shock structure similar to a steady-state shock wave. In the latter case, the compression shock wave is accompanied by a rarefaction region (dilatation wave), which finally leads to the destruction of the shock structure. The solution of the problem of the evolution of a perturbation and its transformation into a shock wave in a charge-varying dusty plasma opens up the possibility of describing real phenomena (such as supernova explosions) and laboratory and active space experiments.  相似文献   

7.
A multifluid MHD model is applied to study the magnetic field dynamics in a dusty plasma. The motion of plasma electrons and ions is treated against the background of arbitrarily charged, immobile dust grains. When the dust density gradient is nonzero and when the inertia of the ions and electrons and the dissipation from their collisions with dust grains are neglected, we are dealing with a nonlinear convective penetration of the magnetic field into the plasma. When the dust density is uniform, the magnetic field dynamics is described by the nonlinear diffusion equations. The limiting cases of diffusion equations are analyzed for different parameter values of the problem (i.e., different rates of the collisions of ions and electrons with the dust grains and different ratios between the concentrations of the plasma components), and some of their solutions (including self-similar ones) are found. The results obtained can also be useful for research in solid-state physics, in which case the electrons and holes in a semiconductor may be analogues of plasma electrons and ions and the role of dust grains may be played by the crystal lattice and impurity atoms.  相似文献   

8.
Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.  相似文献   

9.
A study is made of the features of wave processes in the individual flows of self-gravitating dust grains in a plasma and the electric and gravitational interactions in a system of several dusty plasma flows. It is shown that, in a dusty plasma, Debye screening can substantially weaken the electric coupling between the beams of self-gravitating grains, without affecting the gravitational forces between them, and that the electrostatic perturbations are exchanged between the grain flows via gravitational fields, as happens in vacuum.  相似文献   

10.
Basic equations for dust structures are formulated that account for the balance of the forces, plasma fluxes, and grain charges with allowance for nonlinearity in the screening of individual grains and possible violation of quasineutrality due to the interaction of collective fields with plasma fluxes. A theory of non-linear drag forces exerted by plasma fluxes on dust grains is developed for moderate drift flux velocities, higher than the mean ion thermal velocity but much lower than the acoustic speed. It is shown that equilibrium dust structures have finite sizes and negative charges and that they can exist only in a certain range of intensities of external fluxes on their surfaces. When there is no additional volume ionization, the size of the structures is determined by the intensity of the external flux. A study is made of a weakly ionized dusty plasma in which the interaction of its components with neutral gas atoms plays a major role. The ion, electron, and dust density distributions, as well as the distributions of the dust grain charges and plasma fluxes, are calculated self-consistently as functions of the distance from the center of a structure.  相似文献   

11.
The interaction of charged dust grains with nonlinear vortical structures in the Earth’s atmosphere is analyzed. Certain aspects of the atmosphere?ionosphere interaction, in particular, mechanisms for the appearance of dust grains at ionospheric altitudes, are discussed. It is shown that, at certain altitudes, there are regions in the wavenumber space in which conditions leading to the excitation of acoustic?gravity waves are satisfied. The interaction of nonlinear acoustic?gravity waves with dust grains of meteoric origin at ionospheric altitudes, which leads to the mixing and redistribution of dust grains over the region where vortices exist, is investigated. The possibility of formation of vertical and horizontal dust flows in dusty ionospheric plasma as a result of modulational instability is analyzed. The dynamics of dust grains in dust devils frequently arising in the atmosphere above well-heated surfaces is modeled. The vortical structure of such a dust devil is characterized by a reduced pressure in the center, which facilitates the lifting of small dust grains from the surface. The formulated model is used to calculate the trajectories of dust grains in dust devils with allowance for the influence of the electric field generated in the vortex by colliding dust grains. The calculations show that dust devils play an important role in the transport of dust grains.  相似文献   

12.
The nonlinear characteristics of dust-electron-acoustic (DEA) waves in a dusty electronegative magnetoplasma system consisting of nonextensive hot electrons, inertial cold electrons, positively charged static ions, and negatively charged immobile dust grains has been investigated. In this observation, the well-known reductive perturbation technique is employed to determine different types of nonlinear dynamical equations, namely, magnetized Korteweg–de Vries (KdV), magnetized modified KdV (mKdV), and magnetized Gardner equations. The stationary solitary wave and double layer solution of these three equations, which describe the characteristics of solitary waves and double layers of DEA waves, are obtained and numerically analyzed. It is noticed that various plasma parameters (viz., hot electron nonextensivity, positive ion-to-cold electron number density ratio, dust-to-cold electron number density ratio, etc.) significantly affect the basic properties of DEA solitary waves (DEASWs) and Gardner solitons (GSs). The prodigious results found from this theoretical investigation may be useful for researchers to investigate the nonlinear structures in various space and laboratory plasmas.  相似文献   

13.
The paper presents an introductory review of the basic physical processes in dusty plasmas. The topics to be addressed are dust charging, forces acting on dust grains, interaction between dust grains, and dust-plasma structures.  相似文献   

14.
The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed.  相似文献   

15.
Results are presented from experimental studies of heat transfer in liquid-like plasma-dust structures. The experiments were performed with aluminum oxide grains ~3–5 μm in size in an RF discharge plasma. The heat capacity of the dust grains in plasma is measured. The thermal conductivity and thermal diffusivity of liquid-like plasma-dust structures are deduced under the assumption that the observed temperature gradients and the propagation of a thermal perturbation in a dusty plasma are related to heat conduction within the dust component. The measured temperature dependences of the thermal conductivity and thermal diffusivity are in qualitative agreement with the results of numerical simulations performed in the model of a simple single-atom liquid. It is shown that quantitative discrepancy between the experimental and numerical results is related to the energy loss of dust grains in their collisions with the neutral particles of the ambient gas.  相似文献   

16.
The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.  相似文献   

17.
During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20–60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.  相似文献   

18.
Results are presented from the numerical study of the processes accompanying the formation of chain structures in systems with an anisotropic pairwise interaction similar to the interaction caused by ion focusing. The simulations were performed for extended and bounded chain structures in a wide range of parameters corresponding to conditions of experiments with laboratory dusty plasma. The development of various instabilities in such systems is analyzed in detail for the first time.  相似文献   

19.
20.
A generalized analytical model of instabilities in a dusty plasma with a nonzero grain charge gradient in a field of nonelectrostatic forces is considered. A review is given of different experimental observations of the dust self-oscillations that occur in the plasmas of an rf capacitive discharge and a dc glow discharge and whose appearance can be explained in terms of the proposed model. It is shown that the change in the grain charge gives rise to dynamic dust structures in laboratory gas-discharge plasmas. Attention is focused on the analysis of the onset of vortex motion of the dust grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号