首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.  相似文献   

2.
There is evidence that cystic fibrosis transmembrane conductance regulator (CFTR) interacting proteins play critical roles in the proper expression and function of CFTR. The Na(+)/H(+) exchanger regulatory factor isoform 1 (NHERF1) was the first identified CFTR-binding protein. Here we further clarify the role of NHERF1 in the regulation of CFTR activity in two human bronchial epithelial cell lines: the normal, 16HBE14o-, and the homozygous DeltaF508 CFTR, CFBE41o-. Confocal analysis in polarized cell monolayers demonstrated that NHERF1 distribution was associated with the apical membrane in 16HBE14o- cells while being primarily cytoplasmic in CFBE41o- cells. Transfection of 16HBE14o- monolayers with vectors encoding for wild-type (wt) NHERF1 increased both apical CFTR expression and apical protein kinase A (PKA)-dependent CFTR-mediated chloride efflux, whereas transfection with NHERF1 mutated in the binding groove of the PDZ domains or truncated for the ERM domain inhibited both the apical CFTR expression and the CFTR-dependent chloride efflux. These data led us to hypothesize an important role for NHERF1 in regulating CFTR localization and stability on the apical membrane of 16HBE14o- cell monolayers. Importantly, wt NHERF1 overexpression in confluent DeltaF508 CFBE41o- and DeltaF508 CFT1-C2 cell monolayers induced both a significant redistribution of CFTR from the cytoplasm to the apical membrane and a PKA-dependent activation of CFTR-dependent chloride secretion.  相似文献   

3.
To test the hypothesis that the excess inflammatory response in cystic fibrosis airway epithelial cells is the result of differential activation of genes in response to a laboratory strain of Pseudomonas aeruginosa (PAO1), a 48-h time course of genes expressed following PAO1 stimulation (10(9) CFU for 1 h) was studied in two pairs of airway epithelial cells: 9/HTEo- and 16HBE14o-, each with a matched normal and CF phenotype pair. cRNA was hybridized to Affymetrix HG-U95Av2 chips and pairwise comparisons against zero time (no PAO1) were calculated for each time point. PAO1 elicited profound changes in both cell pairs: for 9/HTEo-, 144 genes changed significantly in the normal pair, and 116 for the CF pair; for the 16HBE14o- pair, 57 genes changed significantly for the normal pair and 53 for the CF pair. Changes were much greater in the 9/HTEo- than in the 16HBE14o- pair, but basal levels of expression of inflammatory genes are higher in the 16HBE14o- pair, so 16HBE14o- was used mainly to corroborate the results of 9/HTEo-. Clustering analysis indicated that the pattern of gene expression is similar in the CF cells and their normal counterparts. However, there were substantial quantitative differences in gene expression. Thus, the difference between CF and normal resides in the magnitude, not the pattern, of the changes.  相似文献   

4.
Lactoferrin and lysozyme are important antimicrobial compounds of airway surface liquid, derived predominantly from serous cells of submucosal glands but also from surface epithelium. Here we compared release of these compounds from the following human cell cultures: primary cultures of tracheal epithelium (HTE), Calu-3 cells (a lung adenocarcinoma cell line frequently used as a model of serous gland cells), 16HBE14o- cells (an SV40 transformed line from airway surface epithelium), T84 cells (a colon carcinoma cell line), and human foreskin fibroblasts (HFF). For lysozyme, baseline secretory rates were in the order Calu-3 > 16HBE14o- > HTE T84 > HFF = 0; for lactoferrin, the only cell type showing measurable release was HTE; for mucus, HTE > Calu-3 > 16HBE14o- T84 > HFF = 0. A wide variety of neurohumoral agents and inflammatory stimuli was without effect on lactoferrin and lysozyme release from HTE or Calu-3 cells, although forskolin did stimulate secretion of water and lysozyme from Calu-3 cells. However, the concentration of lysozyme in the forskolin-induced secretions was much less than in airway gland secretions. Thus our data cast doubt on the utility of Calu-3 cells as a model of airway serous gland cells but do suggest that HTE could prove highly suitable for studies of mucin synthesis and release.  相似文献   

5.
An airway-selective DNase-hypersensitive site (DHS) at kb −35 (DHS-35kb) 5′ to the cystic fibrosis transmembrane conductance regulator (CFTR) gene is evident in many lung cell lines and primary human tracheal epithelial cells but is absent from intestinal epithelia. The DHS-35kb contains an element with enhancer activity in 16HBE14o- airway epithelial cells and is enriched for monomethylated H3K4 histones (H3K4me1). We now define a 350-bp region within DHS-35kb which has full enhancer activity and binds interferon regulatory factor 1 (IRF1) and nuclear factor Y (NF-Y) in vitro and in vivo. Small interfering RNA (siRNA)-mediated depletion of IRF1 or overexpression of IRF2, an antagonist of IRF1, reduces CFTR expression in 16HBE14o- cells. NF-Y is critical for maintenance of H3K4me1 enrichment at DHS-35kb since depletion of NF-YA, a subunit of NF-Y, reduces H3K4me1 enrichment at this site. Moreover, depletion of SETD7, an H3K4 monomethyltransferase, reduces both H3K4me1 and NF-Y occupancy, suggesting a requirement of H3K4me1 for NF-Y binding. NF-Y depletion also represses Sin3A and reduces its occupancy across the CFTR locus, which is accompanied by an increase in p300 enrichment at multiple sites. Our results reveal that the DHS-35kb airway-selective enhancer element plays a pivotal role in regulation of CFTR expression by two independent regulatory mechanisms.  相似文献   

6.
We investigated putative mechanisms by which nitric oxide modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and function in epithelial cells. Immunoprecipitation followed by Western blotting, as well as immunocytochemical and cell surface biotinylation measurements, showed that incubation of both stably transduced (HeLa) and endogenous CFTR expressing (16HBE14o-, Calu-3, and mouse tracheal epithelial) cells with 100 microm diethylenetriamine NONOate (DETA NONOate) for 24-96 h decreased both intracellular and apical CFTR levels. Calu-3 and mouse tracheal epithelial cells, incubated with DETA NONOate but not with 100 microm 8-bromo-cGMP for 96 h, exhibited reduced cAMP-activated short circuit currents when mounted in Ussing chambers. Exposure of Calu-3 cells to nitric oxide donors resulted in the nitration of a number of proteins including CFTR. Nitration was augmented by proteasome inhibition, suggesting a role for the proteasome in the degradation of nitrated proteins. Our studies demonstrate that levels of nitric oxide that are likely to be encountered in the vicinity of airway cells during inflammation may nitrate CFTR resulting in enhanced degradation and decreased function. Decreased levels and function of normal CFTR may account for some of the cystic fibrosis-like symptoms that occur in chronic inflammatory lung diseases associated with increased NO production.  相似文献   

7.
Intercellular adhesion between adjacent airway epithelial cells plays a critical role in maintaining the barrier function of the respiratory mucosa. In the current study, we examined the expression and interaction of cell surface adhesion molecules (E-cadherin, ICAM-1, and MUC1) and their intracellular binding partners (alpha-catenin, beta-catenin, gamma-catenin, and ezrin) in 16HBE14o-, HBE1, 1HAEo-, BEAS-2B, A549, and NCI-H292 human airway epithelial cells. Expression of E-cadherin and MUC1, both in whole cell lysates and biotinylated surface proteins, was observed in 16HBE14o-, HBE1, A549, and NCI-H292 cells, while ICAM-1 was detected only in NCI-H292. In contrast, alpha-, beta-, and gamma-catenin and ezrin were expressed in all of the cells. E-cadherin formed coimmunoprecipitation complexes with beta- and gamma-catenin, whereas MUC1 only associated with beta-catenin. ICAM-1, but not MUC1, coimmunoprecipitated with ezrin in NCI-H292 cells. We conclude that airway epithelial cell-cell adhesion involves a complex network of protein-protein interactions mediated by a diverse array of membrane-bound and cytosolic protein partners.  相似文献   

8.
In chronic inflammatory diseases of the airways, such as cystic fibrosis, hypochlorous acid (HOCl) generated by neutrophils is involved in airway injury. We examined the effects of HOCl on 16HBE14o- bronchial epithelial cells by bolus addition or by generation with glucose oxidase plus myeloperoxidase. HOCl produced both carbonyl formation of a discreet number of proteins and modification of surface targets that were recognized by an antibody raised against HOCl-modified protein. Bolus or enzymatically generated HOCl decreased transepithelial resistance, but surprisingly bolus HOCl also increased short-circuit current. Glutathione in lung epithelial lining fluid is an excellent scavenger of HOCl; however, glutathione content is lower in cystic fibrosis epithelial lining fluid due to deficient glutathione transport to the apical side of bronchial-tracheal epithelial cells (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). We found that alteration of the GSH content of apical fluid above 16HBE14o- cells was protective because all HOCl-induced changes were delayed or eliminated by exogenous glutathione within the physiological range. Extrapolating this to cystic fibrosis suggests that HOCl can alter cell function without destruction but that elevating glutathione could be protective.  相似文献   

9.
The CFBE41o- cell line was generated by transformation of cystic fibrosis (CF) tracheo-bronchial cells with SV40 and has been reported to be homozygous for the DeltaF508 mutation. A systematic characterisation of these cells, which however, is a pre-requisite for their use as an in vitro model, has not been undertaken so far. Here, we report an assessment of optimal culture conditions, the expression pattern of drug-transport-related proteins and the stability/presence of the CF transmembrane conductance regulator (CFTR) mutation in the gene and gene product over multiple passages. The CFBE41o- cell line was also compared with a wild-type airway epithelial cell line, 16HBE14o-, which served as model for bronchial epithelial cells in situ. The CFBE41o- cell line retains at least some aspects of human CF bronchial epithelial cells, such as the ability to form electrically tight cell layers with functional cell-cell contacts, when grown under immersed (but not air-interfaced) culture conditions. The cell line is homozygous for DeltaF508-CFTR over multiple passages in culture and expresses a number of proteins relevant for pulmonary drug absorption (e.g. P-gp, LRP and caveolin-1). Hence, the CFBE41o- cell line should be useful for studies of CF gene transfer or alternative treatment with small drug molecules and for the gathering of further information about the disease at the cellular level, without the need for primary culture.  相似文献   

10.
The respiratory epithelium forms an important barrier against inhaled pollutants and microorganisms, and its barrier function is often compromised during inflammatory airway diseases. Epithelial activation of hypoxia-inducible factor-1 (HIF-1) represents one feature of airway inflammation, but the functional importance of HIF-1 within the respiratory epithelium is largely unknown. Using primary mouse tracheal epithelial (MTE) cells or immortalized human bronchial epithelial cells (16HBE14o-), we evaluated the impact of HIF-1 activation on loss of epithelial barrier function during oxidative stress. Exposure of either 16HBE14o- or MTE cells to H(2)O(2) resulted in significant loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-dextran (4 kDa), and this was attenuated significantly after prior activation of HIF-1 by preexposure to hypoxia (2% O(2); 6 h) or the hypoxia mimics CoCl(2) or dimethyloxalylglycine (DMOG). Oxidative barrier loss was associated with reduced levels of the tight junction protein occludin and with hyperoxidation of the antioxidant enzyme peroxiredoxin (Prx-SO(2)H), events that were also attenuated by prior activation of HIF-1. Involvement of HIF-1 in these protective effects was confirmed using the pharmacological inhibitor YC-1 and by short-hairpin RNA knockdown of HIF-1α. The protective effects of HIF-1 were associated with induction of sestrin-2, a hypoxia-inducible enzyme known to reduce oxidative stress and minimize Prx hyperoxidation. Together, our results suggest that loss of epithelial barrier integrity by oxidative stress is minimized by activation of HIF-1, in part by induction of sestrin-2.  相似文献   

11.
12.
Rhinovirus (RV) is a common cause of asthma exacerbations. The signaling mechanisms regulating RV-induced airway epithelial cell responses have not been well studied. We examined the role of phosphatidylinositol (PI) 3-kinase in RV-induced interleukin (IL)-8 expression. Infection of 16HBE14o- human bronchial epithelial cells with RV39 induced rapid activation of PI 3-kinase and phosphorylation of Akt, a downstream effector of PI 3-kinase. RV39 also colocalized with cit-Akt-PH, a citrogen-tagged fluorescent fusion protein encoding the pleckstrin homology domain of Akt, indicating that 3-phosphorylated PI accumulates at the site of RV infection. Inhibition of PI 3-kinase and Akt attenuated RV39-induced NF-kappaB transactivation and IL-8 expression. Inhibition of PI 3-kinase also blocked internalization of labeled RV39 into 16HBE14o- cells, suggesting that the requirement of PI 3-kinase for RV39-induced IL-8 expression, at least in part, relates to its role in viral endocytosis.  相似文献   

13.
Cationic liposomes are widely used as gene transfer agents in in vitro and in vivo studies of cystic fibrosis. In this study we report comparative results of cationic mediated transfection in several cell lines. We have tested epithelial cell lines expressing the wild-type cystic fibrosis transmembrane protein CFTR (bronchial epithelium-16HBE14o-, submucosal gland-Calu3) and their cystic fibrosis counterparts (CFBE41o-, CFSMEo-), as well as baby hamster kidney fibroblast cell lines (BHK) heterologously expressing human CFTR. The cells were transfected with a green fluorescent protein plasmid complexed with commercial cationic liposome (Geneporter2, GP) and 25 kDa polyethylenimine (PEI). At the end of the incubation (2 hours), low molecular weight heparin was added in order to reduce the toxicity of the lipoplexes. Transfection efficiency and cell viability were measured by flow cytometry. Determination of fatty acid composition of cellular phospholipids was performed by capillary gas chromatography. The short incubation time was sufficient to obtain satisfactory transfection in all cell lines studied. Cells treated with PEI-complexes had lower transfection efficiency and viability compared to GP in all tested cell lines. DeltaF508 CFTR carrying airway epithelial cells were easier to transfect but had lower viability compared to their healthy counterparts. This was, however not the case for the BHK cells. The fatty acid analysis showed characteristic polyunsaturated fatty acid patterns, which correlated with the viability of the transfected cells. Low molecular mass heparin added at the end of the lipoplex incubation time could help to maintain the viability of the cells, without interfering with the transfection efficiency.  相似文献   

14.
15.
In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa (P. aeruginosa) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo. Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.  相似文献   

16.
17.
18.
PURPOSE: Nanoparticles are able to enhance drug or DNA stability for purposes of optimised deposition to targeted tissues. Surface modifications can mediate drug targeting. The suitability of nanoparticles synthesised out of porcine gelatin, human serum albumin, and polyalkylcyanoacrylate as drug and gene carriers for pulmonary application was investigated in vitro on primary airway epithelium cells and the cell line 16HBE14o-. METHODS: The uptake of nanoparticles into these cells was examined by confocal laser scan microscopy (CLSM) and flow cytometry (FACS). Further the cytotoxicity of nanoparticles was evaluated by an LDH-release-test and the inflammatory potential of the nanoparticles was assessed by measuring IL-8 release. RESULTS: CLSM and FACS experiments showed that the nanoparticles were incorporated into bronchial epithelial cells provoking little or no cytotoxicity and no inflammation as measured by IL-8 release. CONCLUSIONS: Based on their low cytotoxicity and the missing inflammatory potential in combination with an efficient uptake in human bronchial epithelial cells, protein-based nanoparticles are suitable drug and gene carriers for pulmonary application.  相似文献   

19.
20.

Background

Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function.

Methods

Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR.

Results

THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression.

Conclusions and general significance

THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号