首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Mechanosensitive channels are ubiquitous amongst bacterial cells and have been proposed to have major roles in the adaptation to osmotic stress, in particular in the management of transitions from high to low osmolarity environments. Electrophysiological measurements have identified multiple channels in Escherichia coli cells. One gene, mscL, encoding a large conductance channel has previously been described, but null mutants were without well-defined phenotypes. Here, we report the characterization of a new gene family required for MscS function, YggB and KefA, which has enabled a rigorous test of the role of the channels. The channel determined by KefA does not appear to have a major role in managing the transition from high to low osmolarity. In contrast, analysis of mutants of E.coli lacking YggB and MscL shows that mechanosensitive channels are designed to open at a pressure change just below that which would cause cell disruption leading to death.  相似文献   

2.
The intracellular concentration of K(+)-glutamate, chromatin-associated proteins, and a downstream regulatory element (DRE) overlapping with the coding sequence, have been implicated in the regulation of the proU operon of Salmonella typhimurium. The basal expression of the proU operon is low, but it is rapidly induced when the bacteria are grown in media of high osmolarity (e.g. 0.3 M NaCl). It has previously been suggested that increased intracellular concentrations of K(+)-glutamate activate the proU promoter in response to increased extracellular osmolarity. We show here that the activation of the proU promoter by K(+)-glutamate in vitro is nonspecific, and the in vivo regulation cannot simply be mimicked in vitro. In vivo specificity requires both the chromatin-associated protein H-NS and the DRE; they are both needed to maintain repression of proU expression at low osmolarity. How H-NS and the DRE repress the proU promoter in vivo has so far been unclear. We show that, in vivo, the DRE acts at a distance to inhibit open complex formation at the proU promoter.  相似文献   

3.
The metabolic byproducts secreted by growing cells can be easily measured and provide a window into the state of a cell; they have been essential to the development of microbiology, cancer biology, and biotechnology. Progress in computational modeling of cells has made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of metabolic networks. However, owing to a lack of data, it has not been possible to validate these predictions across a wide range of strains and conditions. Through literature mining, we were able to generate a database of Escherichia coli strains and their experimentally measured byproduct secretions. We simulated these strains in six historical genome-scale models of E. coli, and we report that the predictive power of the models has increased as they have expanded in size and scope. The latest genome-scale model of metabolism correctly predicts byproduct secretion for 35/89 (39%) of designs. The next-generation genome-scale model of metabolism and gene expression (ME-model) correctly predicts byproduct secretion for 40/89 (45%) of designs, and we show that ME-model predictions could be further improved through kinetic parameterization. We analyze the failure modes of these simulations and discuss opportunities to improve prediction of byproduct secretion.  相似文献   

4.
Adult schistosomes are parasitic blood flukes that have a continuous double lipid bilayered membrane surrounding the entire worm. This tegumental membrane is synthesised during invasion of the vertebrate host by free-swimming infectious forms called cercariae. As cercariae invade their final hosts they lose their tails and encounter a changing environment that includes altered temperature, sugar concentration and osmolarity. We have identified a glucose transporter protein designated SGTP4 that is found exclusively in the outer adult tegument and on membranous vesicles within the tegumental cytoplasm. By using immunofluorescence analysis to monitor the appearance and distribution of SGTP4 we can track the process of new tegumental membrane formation and examine the cues that trigger this developmental pathway. Cercariae in water do not transform their tegument while those incubated in rich medium do so rapidly. We have examined which of the many constituents of rich medium are responsible for triggering this transformation. Incubation in a solution of moderate osmolarity (120 mOsM PBS) is sufficient by itself to trigger tegument transformation, albeit at a slower rate relative to incubation in rich medium. Adding either glucose (to 100 mM) to the solution or increasing the temperature of incubation (from 22 degrees C to 37 degrees C) further increased the rate of tegument biogenesis. The introduction of glucose together with an increase in the incubation temperature further accelerated the process, suggesting that these factors act synergistically to promote transformation rates. The critical nature of osmolarity in inducing the process is highlighted by the fact that transformation proceeds as efficiently in 360 mOsM alone as it does in rich medium. While the fatty acids linolenic acid (cis-9, cis-12, cis-15-octadecatrienoic acid at 1 mM) and capric acid (Decanoic acid, at 0.1 mM) have both been proposed to stimulate tegumental transformation, we show that neither promotes the morphogenesis of a normal schistosomulum tegument. The schistosomicide praziquantel (to 1 mM) has no detectable effect on new tegument formation.  相似文献   

5.
Ca2+-permeable channels that are involved in the responses of mammalian cells to changes in extracellular osmolarity have not been characterized at the molecular level. Here we identify a new TRP (transient receptor potential)-like channel protein, OTRPC4, that is expressed at high levels in the kidney, liver and heart. OTRPC4 forms Ca2+-permeable, nonselective cation channels that exhibit spontaneous activity in isotonic media and are rapidly activated by decreases in, and are inhibited by increases in, extracellular osmolarity. Changes in osmolarity of as little as 10% result in significant changes in intracellular Ca2+ concentration. We propose that OTRPC4 is a candidate for a molecular sensor that confers osmosensitivity on mammalian cells.  相似文献   

6.
Bacterial cells possess a subset of genes whose expression correlates with changes in DNA supercoiling brought about by anaerobic growth and by growth at high osmolarity. It has been shown previously that expression of the histidine biosynthetic operon of Salmonella typhimurium is derepressed by relaxation of supercoiled DNA. Here, we confirm that a his::MudJ operon fusion in S. typhimurium can be induced by treatment with the DNA gyrase inhibitor novobiocin in a dose-dependent manner, and show that the level of derepression is higher in stationary phase than in mid-exponential phase cultures. Furthermore, expression of his is repressed by anaerobiosis and by osmolarity, two environmental parameters which increase the negative supercoiling of bacterial DNA. Novobiocin induction of his is also repressed by growing the cells either at high osmolarity or anaerobically. Both environmental repression and novobiocin induction of his require the his attenuator. In addition, derepression of his expression by novobiocin and its repression by anaerobiosis or osmolarity are independent of the stringent response gene, relA.  相似文献   

7.
OmpR and EnvZ comprise a two-component system that regulates the porin genes ompF and ompC in response to changes in osmolarity. EnvZ is autophosphorylated by intracellular ATP on a histidine residue, and it transfers the phosphoryl group to an aspartic acid residue of OmpR. EnvZ can also dephosphorylate phospho-OmpR (OmpR-P) to control the cellular level of OmpR-P. At low osmolarity, OmpR-P levels are low because of either low EnvZ kinase or high EnvZ phosphatase activities. At high osmolarity, OmpR-P is elevated. It has been proposed that EnvZ phosphatase is the activity that is regulated by osmolarity. OmpR is a two-domain response regulator; phosphorylation of OmpR increases its affinity for DNA, and DNA binding stimulates phosphorylation. The step that is affected by DNA depends upon the phosphodonor employed. In the present work, we have used fluorescence anisotropy and phosphotransfer assays to examine OmpR interactions with EnvZ. Our results indicate that phosphorylation greatly reduces the affinity of OmpR for the kinase, whereas DNA does not affect their interaction. The results presented cast serious doubts on the role of the EnvZ phosphatase in response to signaling in vivo.  相似文献   

8.
9.
10.
G Protein-coupled receptor dimerization/oligomerization has been well established during the last several years. Studies have demonstrated the existence of dimers/digomers both in vitro and in living cells. However, a thorough characterization of the biochemical nature of receptor dimers and oligomers as well as their occurrence at the cell surface has not been properly addressed. In this study, we show that both beta2-adrenergic receptor (beta2AR) dimers and oligomers exist at the plasma membrane and that the detection of such species, following receptor solubilization and resolution by denaturing polyacrylamide gel electrophoresis (SDS-PAGE), does not result from the formation of spurious disulfide bonds during cell lysis. Moreover, our results indicate that the biochemical nature of beta2AR dimers is different from that of the oligomers. Although both complexes are partially resistant to SDS denaturation, disulfide bonding is absolutely required for the stability of beta2AR oligomers but not dimers in SDS-PAGE. Indeed, dimeric species can be detected even in the presence of high concentrations of reducing and alkylating agents. Although the different biochemical nature of the dimers and oligomers may be indicative of distinct biological roles in cells, additional studies will be required to further elucidate the biosynthesis and function of these receptor forms.  相似文献   

11.
Saliva is identified as functional equivalent to serum, reflecting the physiological state of the body, as well as hormonal, emotional, nutritional and metabolic alterations. The application of mass spectrometry based approaches has allowed a thorough characterization of the saliva proteome and led to the discovery of putative biomarkers. Several salivary biomarkers have been recently explored as potentially useful screening tools in patients diagnosed with metabolic disorders. In this review, we provide an overview of saliva proteomics studies, with a focus on diabetes, and we explore the evidence for the utility of well identified markers for the diagnosis and monitoring of the disease. Emerging approaches in salivary diagnostics that may significantly advance the field of diabetes research are also highlighted.  相似文献   

12.
Hypotonicity activates a native chloride current in Xenopus oocytes   总被引:20,自引:2,他引:18       下载免费PDF全文
Xenopus oocytes are frequently utilized for in vivo expression of cellular proteins, especially ion channel proteins. A thorough understanding of the endogenous conductances and their regulation is paramount for proper characterization of expressed channel proteins. Here we detail a novel chloride current (ICl.swell) responsive to hypotonicity in Xenopus oocytes using the two-electrode voltage clamp technique. Reducing the extracellular osmolarity by 50% elicited a calcium-independent chloride current having an anion conductivity sequence identical with swelling-induced chloride currents observed in epithelial cells. The hypotonicity-activated current was blocked by chloride channel blockers, trivalent lanthanides, and nucleotides. G- protein, cAMP-PKA, and arachidonic acid signaling cascades were not involved in ICl.swell activation. ICl.swell is distinct from both stretch-activated nonselective cation channels and the calcium- activated chloride current in oocytes and may play a critical role in volume regulation in Xenopus oocytes.  相似文献   

13.
Isosmotic volume reabsorption in rat proximal tubule   总被引:1,自引:1,他引:0       下载免费PDF全文
A theoretical model incorporation both active and passive forces has been developed for fluid reabsorption from split oil droplets in rat intermediate and late proximal tubule. Of necessity, simplifying assumptions have been introduced; we have assumed that the epithelium can be treated as a single membrane and that the membrane "effective" HCO3 permeability is near zero. Based on this model with its underlying assumptions, the following conclusions are drawn. Regardless of the presence or absence of active NaCl transport, fluid reabsorption from the split oil droplet is isosmotic. The reabsorbate osmolarity can be affected by changes in tubular permeability parameters and applied forces but is not readily altered from an osmolarity essentially equal to that of plasma. In a split droplet, isosmotic flow need not be a special consequence of active Na transport, is not the result of a particular set of permeability properties, and is not merely a trivial consequence of a very high hydraulic conductivity; isosmotic flow can be obtained with hydraulic conductivity nearly an order of magnitude lower than that previously measured in the rat proximal convoluted tubule. Isosmotic reabsorption is, in part, the result of the interdependence of salt and water flows, their changing in parallel, and thus their ratio, the reabsorbate concentration being relatively invariant. Active NaCl transport can cause osmotic water flow by reducing the luminal fluid osmolarity. In the presence of passive forces the luminal fluid can be hypertonic to plasma, and active NaCl transport can still exert its osmotic effect on volume flow. There are two passive forces for volume flow: the Cl gradient and the difference in effective osmotic pressure; they have an approximately equivalent effect on volume flow. Experimentally, we have measured volume changes in a droplet made hyperosmotic by the addition of 50 mM NaCl; the experimental results are predicted reasonably well by our theoretical model.  相似文献   

14.
GLYT1, a glycine transporter belonging to the neurotransmitter transporter family, has recently been identified as a novel cell volume-regulatory mechanism in the earliest stages of the mouse preimplantation embryo. It apparently acts by regulating the steady-state intracellular concentration of glycine, which functions as an organic osmolyte in embryos, to balance external osmolarity and thus maintain cell volume. GLYT1 in embryos was the first mammalian organic osmolyte transporter identified that appears to function in cell volume control under conditions of normal osmolarity, rather than being a response to the stress of chronic hypertonicity. Its maximal rate of transport was shown to be regulated by osmolarity. However, it was not known whether this osmotic regulation of the rate of glycine transport is sufficient to account for the observed control of steady-state intracellular glycine levels as a function of osmolarity in embryos. Here, we show that the intracellular accumulation of glycine in embryos is a direct function of the rate of glycine uptake via GLYT1. In addition, we have shown that the rate of efflux, likely via the volume-regulated anion and organic osmolyte channel in embryos, is also under osmotic regulation and contributes substantially to the control of steady-state glycine concentrations. Together, control of both the rate of uptake and rate of efflux of glycine underlies the mechanism of osmotic regulation of the steady-state concentration of glycine and hence cell volume in early embryos.  相似文献   

15.
Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB.  相似文献   

16.
17.
Cartilage is one of few tissues where adult stem/progenitor cells have not been putatively identified. Recent studies have provided strong evidence that a sub-population of mesenchymal progenitor cells (MPCs) derived from the synovial fluid may be able to affect some degree of cartilage repair both in vivo and in vitro/ex vivo, however this does not appear to be the case in patients with arthritis. Previously, it has been found that synovial fluid osmolarity is decreased in patients with osteoarthritis (OA) or Rheumatoid arthritis (RA) and these changes in osmolarity have been linked to changes in chondrocyte gene regulation. However, it is yet unknown if changes in osmolarity regulate the gene expression in synovial fluid MPCs (sfMPCs), and by extension, chondrogenesis of this cell population. In the present study we have collected synovial fluid samples from normal, OA and RA knee joints, quantified the osmolarity of the fluid and modified the culture/differentiation media to span a range of osmolarities (264-375 mOsm). Chondrogenesis was measured with Alcian blue staining of cultures in addition to quantitative PCR (qPCR) using probes to Sox9, ACAN and Col2A1. Overall, sfMPCs from arthritic joints demonstrated decreased chondrogenic potential compared to sfMPCs isolated from normal synovial fluid. Furthermore, the sfMPCs retained increased chondrogenic potential if differentiated under the same osmolarity conditions for which they were initially derived within. In conclusion, it does appear the synovial fluid osmolarity regulates the chondrogenic potential of sfMPCs, however, further study is required to elucidate the mechanism by which the changes in osmolarity are sensed by the cells and regulate chondrogenic gene expression.  相似文献   

18.
19.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus. In baker's yeast external high osmolarity activates high osmolarity glycerol (HOG) MAPK pathway which consists of two upstream branches (SHO1 and SLN1) and common downstream elements Pbs2p MAPKK and Hog1p MAPK. Activation of this pathway causes rapid nuclear accumulation of Hog1p, essentially leading to the expression of target genes. Previously we have isolated a PBS2 homologue (DPBS2) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that partially complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show that by replacing C-terminal region of Dpbs2p with the homologous region of Pbs2p we could abrogate partial complementation exhibited by Dpbs2p and this was achieved due to increase in nuclear translocation of Hog1p. Thus, our result showed that in HOG pathway, MAPKK has important role in nuclear translocation of Hog1p.  相似文献   

20.
An overview of enzymatic production of biodiesel   总被引:13,自引:0,他引:13  
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号