首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete sequence and gene organization of the Nosema spodopterae rRNA gene   总被引:1,自引:0,他引:1  
By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species.  相似文献   

2.
The microsporidian Nosema antheraeae is a pathogen that infects the Chinese oak silkworm, Antheraea pernyi. We sequenced the complete small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) of N. antheraeae, and compared the SSU rRNA sequences in other microsporidia. The results indicated that Nosema species, including N. antheraeae, formed two distinct clades, consistent with previous observations. Furthermore, N. antheraeae is clustered with N. bombycis with high bootstrap support. The organization of the rRNA gene of N. antheraeae is LSU-ITS1-SSU-ITS2-5S, also following a pattern similar to the Nosema type species, N. bombycis. Thus, N. antheraeae is a Nosema species and has a close relationship to N. bombycis.  相似文献   

3.
We present here for the first time the complete DNA sequence data (4301bp) of the ribosomal RNA (rRNA) gene of the microsporidian type species, Nosema bombycis. Sequences for the large subunit gene (LSUrRNA: 2497bp, GenBank Accession No. ), the internal transcribed spacer (ITS: 179bp, GenBank Accession No. ), the small subunit gene (SSUrRNA: 1232bp), intergenic spacer (IGS: 279bp), and 5S region (114bp) are also given, and the secondary structure of the large subunit is discussed. The organization of the N. bombycis rRNA gene is LSUrRNA-ITS-SSUrRNA-IGS-5S. This novel arrangement, in which the LSU is 5' of the SSU, is the reverse of the organizational sequence (i.e., SSU-ITS-LSU) found in all previously reported microsporidian rRNAs, including Nosema apis. This unique character in the type species may have taxonomic implications for the members of the genus Nosema.  相似文献   

4.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

5.
用PCR方法扩增、克隆了菜粉蝶微孢子虫核糖体小亚单位RNA(SSUrRNA)编码基因的核心序列 1 2 0 5bp后 ,进一步克隆到菜粉蝶微孢子虫SSUrRNA基因 3′端至LSUrRNA基因 5′端 (580R区 ) 657bp长的序列。与GenBank中对应序列比较后 ,在 657bp这段序列鉴定出菜粉蝶微孢子虫SSUrRNA基因 3′末端、rRNA基因内转录间隔区 (ITS)及LSUrRNA基因 5′端 (580R区 ) ,它们分别位于该序列中 1 45位、1 46 1 86位及 1 87位。与SSUrRNA基因核心序列拼接后SSUrRNA全基因长为 1 2 4 5bp ,rRNA基因内转录间隔区为 41bp及核糖体大亚单位RNA(LSUr RNA)编码基因 580R区为 470bp。同时还构建了菜粉蝶微孢子虫SSUrRNA的完整二级结构。关于微孢子虫rRNA基因的克隆及SSUrRNA的二级结构在国内尚属首次报道 ,它为进一步利用核糖体RNA编码基因及SSUrRNA的二级结构对不同微孢子虫的分类及亲缘关系的确定奠定了基础  相似文献   

6.
ABSTRACT. Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana ; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis ( Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana ; and Nosema disstriae , from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae , Nosema sp. CPP, Nosema sp. CO, and N . disstriae have a high SSU rDNA sequence identity (0.6%–1.5%) and are members of the "true Nosema " clade. They all showed the reverse arrangement of the (large subunit [LSU]–internal transcribed spacer [ITS]–SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU–ITS–LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema " clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae , Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species.  相似文献   

7.
In this study, a new microsporidian, PX2, was isolated from the diamondback moth, Plutella xylostella, and then compared with another isolate (PX1), and with Nosema spodopterae and N. bombycis. Sequence data showed that the rRNA gene organizations of PX1 and PX2 exhibited a typical Nosema-specific organization: 5'-LSUrRNA (large subunit ribosomal RNA)-ITS (internal transcribed spacer)-SSUrRNA-IGS (intergenic spacer)-5S-3'. Phylogenetic analysis (maximum likelihood, neighbor joining, maximum parsimony, and Bayesian analysis) of the LSUrRNA and SSUrRNA gene sequences, and the sequences of the alpha-tubulin, beta-tubulin, and RPB1 (DNA dependent RNA polymerase II largest subunit) genes found that PX1 was closer to N. bombycis and N. spodopterae than to PX2. Comparison of the identities of the rRNA domains and of the other three genes showed a high divergence in the sequences of the rRNA spacer regions (ITS and IGS). This is consistent with the hypothesis that PX2, if not PX1, might represent a new Nosema species.  相似文献   

8.
Nosema locustae is a microsporidian parasite of grasshopper pests that is used as a biological control agent, and is one of the emerging model systems for microsporidia. Due largely to its diplokaryotic nuclei, N. locustae has been classified in the genus Nosema, a large genus with members that infect a wide variety of insects. However, some molecular studies have cast doubt on the validity of certain Nosema species, and on the taxonomic position of N. locustae. To clarify the affinities of this important insect parasite we sequenced part of the rRNA operon of N. locustae and conducted a phylogenetic analysis using the complete small subunit rRNA gene. Nosema locustae is only distantly related to the nominotypic N. bombycis, and is instead closely related to Antonospora scoticae, a recently described parasite of bees. We examined the ultrastructure of mature N. locustae spores, and found the spore wall to differ from true Nosema species in having a multi-layered exospore resembling that of Antonospora (one of the distinguishing features of that genus). Based on both molecular and morphological evidence, therefore, we propose transferring N. locustae to the genus Antonospora, as Antonospora locustae n. comb.  相似文献   

9.
To understand the source of the multiple DNA sequence variants of Nosema bombi ribosomal RNA (rRNA) found in a single bumble bee host, we PCR amplified, cloned, and sequenced the partial rRNA gene from 125 clones, which were derived from four out of 46 spores individually isolated from a single host by laser microdissection. At least two rRNA variants, characterized by either (GTTT)(2) or (GTTT)(3) repeat units within the internal transcribed spacer (ITS) region, were found per spore in approximately equal proportions, variants which were also found in approximately equal proportions in 55 clones of the two DNA extracts of multiple spores from the same host. Firstly, we demonstrate for the first time that DNA sequences can be obtained from single-binucleate microsporidia. Secondly, it appears that concerted evolution has not homogenized the sequences of all rRNA copies within a single N. bombi spore or even within a single nucleus. We thereby demonstrate unequivocally that two or more rRNA sequence variants exist per N. bombi spore, and urge caution in the use of multicopy rRNA genes for population genetic and phylogenetic analysis of this and other Microsporidia unless homologous copies can be reliably typed.  相似文献   

10.
The ribosomal RNA (rRNA) gene region of the fourNosema sp. isolates (C01, C02, C03 and C04) fromPieris rapae in Korea has been examined. Complete DNA sequence data (3779 bp) of The rRNA gene ofNosema sp. C01 are presented for the small subunit gene (SSU rRNA: 1236 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA 2506 bp). The secondary structures ofNosema sp. COI SSU and LSU rRNA genes are constructed and described. The SSU rRNA showed a hypervariable V4 region identified four additional stems including a pseudoknot. Phylogenetic analysis based on the SSU rRNA suggests that the four isolates belong to the ‘true’Nosema group. In contrast to theNosema/Vairimorpha clade, the members of the group are highly divergent.  相似文献   

11.
ABSTRACT. The microsporidian species Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis were compared by using sequence data of their rRNA gene segments, which were amplified by polymerized chain reaction and directly sequenced. The forward primer 530f (5'-GTGCCATCCAGCCGCGG-3') was in the small subunit rRNA (SSU-rRNA) and the reverse primer 580r (5'-GGTCCGTGTTTCAAGACGG-3') was in the large subunit rRNA (LSU-rRNA). We have utilized these sequence data, the published data on Encephalitozoon cuniculi and Encephalitozoon hellem and our cloned SSU-rRNA genes from E. bieneusi and S. intestinalis to develop a phylogenetic tree for the microsporidia involved in human infection. The higher sequence similarities demonstrated between S. intestinalis and E. cuniculi support the placement of S. intestinalis in the family Encephalitozoonidae. This method of polymerized chain reaction rRNA phylogeny allows the establishment of phylogenetic relationships on limiting material where culture and electron microscopy are difficult or impossible and can be applied to archival material to expand the molecular phylogenetic analysis of the phylum Microspora. In addition, the highly variable region (E. coli numbering 590–650) and intergenic spacer regions in the microsporidia were noted to have structural correspondence, suggesting the possibility that they are coevolving.  相似文献   

12.
A new species of microsporidia from Drosophila melanogaster was investigated by light and electron microscopy and by ribosomal RNA (rRNA) sequencing. This microsporidium and the previously described Nosema kingi and Nosema acridophagus have been transferred to the new genus Tubulinosema gen. nov. with the following characters: nuclei are in diplokaryotic arrangement during the life cycle. All stages are in direct contact with the host cell cytoplasm, slightly anisofilar polar tube with the last coils being smaller in diameter arranged in one or two rows on both sides of the diplokaryon and small tubuli on the surface of late meronts. Spores are oval or slightly pyriform. Thick endospore wall, thinner over anchoring disc. This new genus and the genus Brachiola have been placed in a new family Tubulinosematidae fam. nov. Phylogenetic analysis of small subunit rRNA sequences by different methods placed Tubulinosema spp. in one clade with the genus Brachiola forming its sister clade, which is distant from the clade containing the true Nosema spp. including Nosema bombycis.  相似文献   

13.
14.
Tetrahymena thermophila mitochondrial DNA is a linear molecule with two tRNAs, large subunit beta (LSU beta) rRNA (21S rRNA) and LSU alpha rRNA (5.8S-like RNA) encoded near each terminus. The DNA sequence of approximately 550 bp of this region was determined in six species of Tetrahymena. In three species the LSU beta rRNA and tRNA(leu) genes were not present on one end of the DNA, demonstrating a mitochondrial genome organization different from that of T. thermophila. The DNA sequence of the LSU alpha rRNA was used to construct a mitochondrial phylogenetic tree, which was found to be topologically equivalent to a phylogenetic tree based on nuclear small subunit rRNA sequences (Sogin et al. (1986) EMBO J. 5, 3625-3630). The mitochondrial rRNA gene was found to accumulate base-pair substitutions considerably faster than the nuclear rRNA gene, the rate difference being similar to that observed for mammals.  相似文献   

15.
中国沿海蛾螺科5属10种28S rRNA基因的系统学分析   总被引:1,自引:0,他引:1  
目前已报道在我国分布的蛾螺科种类有13个属,约31个种,系统学和分类地位仍存在较大的争议.本研究利用核糖体大亚基28S rRNA的部分序列对我国辽宁、山东、福建沿海蛾螺科5属10个种的系统发生进行了分析.通过PCR获得了大约1400 bp的片段,测序之后,通过遗传分析软件对序列进行了比对分析,以骨螺科的脉红螺作为外群,利用Neighbor-Joining (NJ)法和Minimum Evolution (ME)法建立了系统树.结果显示,所研究的蛾螺科5属10个种可以被分为5个亚群:第一大分支为香螺亚群,包括Neptunea属的香螺、新英格兰蛾螺、Neptunea eulimata Dall、和一个未知种以及Siphonalia属的略胀管蛾螺;第二个分支为侧平肩螺亚群;第三个分支为荻曷莺突坪6曷菅侨海坏谒母龇种止芏曷菅群;第五个分支为方斑东风螺亚群.由系统学分析可知,香螺是较为进化的种;未知种为香螺属内的种;略胀管蛾螺与Neptunea属的种类亲缘关系较近,序列相似系数为0.9%-1.4%,已经达到了属内水平,建议将略胀管蛾螺归为Neptunea属.  相似文献   

16.
A new microsporidian parasite Nosema chrysorrhoeae n. sp., isolated in Bulgaria from the browntail moth (Euproctis chrysorrhoea L.), is described. Its life cycle includes two sequential developmental cycles that are similar to the general developmental cycles of the Nosema-like microsporidia and are indistinguishable from those of two Nosema spp. from Lymantria dispar. The primary cycle takes place in the midgut tissues and produces binucleate primary spores. The secondary developmental cycle takes place exclusively in the silk glands and produces binucleate environmental spores. N. chrysorrhoeae is specific to the browntail moth. Phylogenetic analysis based on the ssu rRNA gene sequence places N. chrysorrhoeae in the Nosema/Vairimorpha clade, with the microsporidia from lymantriid and hymenopteran hosts. Partial sequences of the lsu rRNA gene and ITS of related species Nosema kovacevici (Purrini K., Weiser J., 1975. Natürliche Feinde des Goldafters, Euproctis chrysorrhoea L., im Gebiet von Kosovo, FSR Jugoslawien. Anzeiger fuer Sch?dlingskunde, Pflanzen-Umweltschutz, 48, 11-12), Nosema serbica Weiser, 1963 and Nosema sp. from Lymantria monacha was obtained and compared with N. chrysorrhoeae. The molecular data indicate the necessity of future taxonomic reevaluation of the genera Nosema and Vairimorpha.  相似文献   

17.
We provide molecular systematics of a microporidian species, Nosema fumiferanae, one of the most common natural enemies of spruce budworm, Choristoneura fumiferana. The uncharacterized flanking region upstream of the large subunit (LSU) rRNA and the complete rRNA cistron of N. fumiferanae was 4,769 bp long. The organization of the rRNA gene was 5′‐LSU rRNA‐ITS‐SSU rRNA‐IGS‐5S‐3′ and corresponded primarily to most insect (i.e. lepidopteran) Nosema species identified and classified to date. Phylogenetic analysis based on the complete rRNA cistron indicated that N. fumiferanae is closely related to Nosema plutellae and is correctly assigned to the “true” Nosema group. Suggestions were provided on a criterion to delineate the “true” Nosema from other microsporidian species.  相似文献   

18.
The slow-growing Mycobacterium celatum is known to have two different 16S rRNA gene sequences. This study confirms the presence of two rrn operons and describes their organization. One operon (rrnA) was found to be located downstream from murA and the other (rrnB) was found downstream from tyrS. The promoter regions were sequenced, and also the intergenic transcribed spacer (ITS1 and ITS2) regions separating the 16S rRNA, 23S rRNA and 5S rRNA gene coding regions. Analysis of the RNA fraction revealed that rrnA is regulated by two (P1 and PCL1) promoters and rrnB is regulated by one (P1). These data show that the two rrn operons of M. celatum are organized in the same way as the two rrn operons of classical fast-growing mycobacteria. This information was incorporated into a phylogenetic analysis of the genus based on both 16S rRNA gene sequences and (where possible) the number of rrn operons per genome. The results suggest that the ancestral Mycobacterium possessed two (rrnA and rrnB) operons per genome and that subsequently, on two separate occasions, an operon (rrnB) was lost, leading to two clusters of species having a single operon (rrnA); one cluster includes the classical pathogens and the other includes Mycobacterium abscessus and Mycobacterium chelonae.  相似文献   

19.
The rRNA gene cluster of microsporidia is typically arranged in the order small subunit-internal transcribed spacer-large subunit, which conforms with the general arrangement of these genes in nearly all organisms. We found a rearrangement of the cluster in the microsporidium Glugoides intestinalis, where the large subunit precedes the small subunit. Such a rearrangement has already been reported for several species in the microsporidian genus Nosema, and we provide evidence that the arrangement reported here is a second, independent event.  相似文献   

20.
核糖体RNA(rRNA)是一种理想的进化计时器,已广泛地应用于研究微生物的系统发育和进化关系。蜜蜂和熊蜂都被微孢子虫感染,关于蜜蜂和熊蜂微孢子虫rRNA基因研究主要有rRNA基因序列的测定分析、二级结构的研究和用rRNA基因检测诊断微孢子虫等。这些对蜜蜂和熊蜂微孢子虫系统发育的研究和微孢子虫的防治等具有重要的推动作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号