首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.  相似文献   

2.
The iron–sulphur (Fe–S)‐containing RNase L inhibitor (Rli1) is involved in ribosomal subunit maturation, transport of both ribosomal subunits to the cytoplasm, and translation initiation through interaction with the eukaryotic initiation factor 3 (eIF3) complex. Here, we present a new function for Rli1 in translation termination. Through co‐immunoprecipitation experiments, we show that Rli1 interacts physically with the translation termination factors eukaryotic release factor 1 (eRF1)/Sup45 and eRF3/Sup35 in Saccharomyces cerevisiae. Genetic interactions were uncovered between a strain depleted for Rli1 and sup35‐21 or sup45‐2. Furthermore, we show that downregulation of RLI1 expression leads to defects in the recognition of a stop codon, as seen in mutants of other termination factors. By contrast, RLI1 overexpression partly suppresses the read‐through defects in sup45‐2. Interestingly, we find that although the Fe–S cluster is not required for the interaction of Rli1 with eRF1 or its other interacting partner, Hcr1, from the initiation complex eIF3, it is required for its activity in translation termination; an Fe–S cluster mutant of RLI1 cannot suppress the read‐through defects of sup45‐2.  相似文献   

3.
4.
5.
Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors.  相似文献   

6.
Regulation of protein synthesis at translation termination is a relatively under-explored, but rapidly expanding field. Recent advances in elucidating the mechanism of translation termination are helping to understand non-canonical events associated with translation termination. These "recoding" events include read-through of stop-codons, insertion of unusual amino acids such as selenocysteine and production of several polypeptides from one open reading frame. This review summarises data on termination-dependent recoding events, and proposes that there are two types of stop codon-associated sequences optimized to perform different functions: termination of translation per se or alternative elongation events.  相似文献   

7.
Mazur  A. M.  Kholod  N. S.  Seit-Nebi  A.  Kisselev  L. L. 《Molecular Biology》2002,36(1):104-109
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

8.
真核生物蛋白质翻译终止过程中,第一类肽链释放因子(eukaryotic polypeptide release factor, eRF1)利用其N端结构域识别终止密码子。eRF1的N结构域中的GTS、NIKS和YxCxxxF模体对于终止密码子的识别发挥重要作用。但至目前为止,eRF1识别终止密码子的机制,尤其是对于终止密码子的选择性识别机制仍不清楚。我们构建了四膜虫(Tetrahymena thermophilia)eRF1的N端结构域与酿酒酵母(Saccharomyces cerevisiae)或裂殖酵母(Schizosaccharomyces pombe)eRF1的M和C结构域组成的杂合eRF1,即Tt/Sc eRF1 和Tt/Sp eRF1。双荧光素酶检测结果证实,两种杂合eRF1在细胞中识别终止密码子的活性具有显著差异。Tt/Sc eRF1仅识别UGA密码子,与四膜虫eRF1一致,具有密码子识别特异性;而Tt/Sp eRF1可以识别3个终止密码子,无密码子识别特异性。为解释这一现象,将Sp eRF1的C结构域中的1个关键的小结构域中的氨基酸进行突变,与Sc eRF1相应位点的氨基酸一致。分析结果显示,突变体Tt/Sp eRF1识别密码子UAA和UAG的性质发生显著变化,说明第一类肽链释放因子的C端结构域参与了终止密码子的识别过程。这提示,四膜虫eRF1识别终止密码子的特异性可能依赖于eRF1分子内的结构域间相互作用。本研究结果为揭示肽链释放因子识别终止密码子的分子机制提供了数据支持。  相似文献   

9.
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1–IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

10.
肽链释放因子(polypeptide release factor, RF)是参与细胞内蛋白质合成终止过程中新生肽链释放的一组重要的蛋白质,包括两类,即第一类肽链释放因子(classⅠrelease factor, RFⅠ)和第二类肽链释放因子(classⅡrelease factor, RFⅡ).关于第一类肽链释放因子识别终止密码子的机制和功能位点是目前分子细胞生物学领域的一个研究热点,第二类肽链释放因子作为一类GTP酶,在第一类肽链释放因子识别终止密码子和肽链释放过程中的协同作用也备受关注.近些年来,通过构建体内和体外的测活体系,对第一类肽链释放因子识别终止密码子的机制的研究取得了一些进展,提出了多种假说和模型,尤其是对第一类肽链释放因子的晶体结构及两类肽链释放因子复合体的空间结构的研究,为揭示真核生物细胞内蛋白质合成终止机制提供了直接的证据.  相似文献   

11.
Namy O  Hatin I  Rousset JP 《EMBO reports》2001,2(9):787-793
The efficiency of translation termination is influenced by local contexts surrounding stop codons. In Saccharomyces cerevisiae, upstream and downstream sequences act synergistically to influence the translation termination efficiency. By analysing derivatives of a leaky stop codon context, we initially demonstrated that at least six nucleotides after the stop codon are a key determinant of readthrough efficiency in S. cerevisiae. We then developed a combinatorial-based strategy to identify poor 3′ termination contexts. By screening a degenerate oligonucleotide library, we identified a consensus sequence –CA(A/G)N(U/C/G)A–, which promotes >5% readthrough efficiency when located downstream of a UAG stop codon. Potential base pairing between this stimulatory motif and regions close to helix 18 and 44 of the 18S rRNA provides a model for the effect of the 3′ stop codon context on translation termination.  相似文献   

12.
The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.  相似文献   

13.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

14.
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.  相似文献   

15.
Termination of translation in eukaryotes is governed by the ribosome, a termination codon in the mRNA, and two polypeptide chain release factors (eRF1 and eRF3). We have identified a human protein of 628 amino acids, named eRF3b, which is highly homologous to the known human eRF3 henceforth named eRF3a. At the nucleotide and at the amino acid levels the human eRF3a and eRF3b are about 87% identical. The differences in amino acid sequence are concentrated near the amino terminus. The most important difference in the nucleotide sequence is that eRF3b lacks a GGC repeat close to the initiation codon in eRF3a. We have cloned the cDNA encoding the human eRF3b, purified the eRF3b expressed in Escherichia coli, and found that the protein is active in vitroas a potent stimulator of the release factor activity of human eRFl. Like eRF3a, eRF3b exhibits GTPase activity, which is ribosome- and eRFl-dependent. In vivoassays (based on suppression of readthrough induced by three species of suppressor tRNAs: amber, ochre, and opal) show that the human eRF3b is able to enhance the release factor activity of endogenous and overexpressed eRF1 with all three stop codons.  相似文献   

16.
Differential scanning calorimetry (DSC) was used to study thermal denaturation of the human class 1 translation termination factor eRF1 and its mutants. Free energy changes caused by amino acid substitutions in the N domain were computed for eRF1. The melting of eRF1, consisting of three domains, proved to be cooperative. The thermostability of eRF1 was not affected by certain substitutions and was slightly increased by certain others. The corresponding residues were assumed to play no role in maintaining the eRF1 structure, which agreed with the published X-ray data. In these mutants (E55D, Y125F, N61S, E55R, E55A, N61S + S64D, C127A, and S64D), a selective loss of the capability to induce hydrolysis of peptidyl-tRNA in the ribosomal P site in the presence of a stop codon was not associated with destabilization of their spatial structure. Rather, the loss was due to local changes in the stereochemistry of the side groups of the corresponding residues in functionally important sites of the N domain. Two amino acid residues of the N domain, N129 and F131, proved to play an important role in the structural stability of eRF1 and to affect the selective recognition of mRNA stop codons in the ribosome. The recognition of the UAG and UAA stop codons in vitro was more tightly associated with the stability of the spatial structure of eRF1 as compared with that of the UGA stop codon.  相似文献   

17.
In eukaryotes, eRF1 and eRF3 are associated in a complex that mediates translation termination. The regulation of the formation of this complex in vivo is far from being understood. In mammalian cells, depletion of eRF3a causes a reduction of eRF1 level by decreasing its stability. Here, we investigate the status of eRF3a when not associated with eRF1. We show that eRF3a forms altered in their eRF1-binding site have a decreased stability, which increases upon cell treatment with the proteasome inhibitor MG132. We also show that eRF3a forms altered in eRF1 binding as well as wild-type eRF3a are polyubiquitinated. These results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of eRF3a controls translation termination complex formation by adjusting the eRF3a level to that of eRF1.  相似文献   

18.
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q → TAA, 242R → TGA, 317L → TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.  相似文献   

19.
We report NMR assignments of the protein backbone of the C-terminal domain (163 a.a.) of human class 1 translation termination factor eRF1. It was found that several protein loop residues exist in two slowly interconverting conformational states.  相似文献   

20.
Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号