首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the microbial ecology of three naturally fermented sausages produced in northeast Italy was studied by culture-dependent and -independent methods. By plating analysis, the predominance of lactic acid bacteria populations was pointed out, as well as the importance of coagulase-negative cocci. Also in the case of one fermentation, the fecal enterocci reached significant counts, highlighting their contribution to the particular transformation process. Yeast counts were higher than the detection limit (> 100 CFU/g) in only one fermented sausage. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns and sequencing of the bands allowed profiling of the microbial populations present in the sausages during fermentation. The bacterial ecology was mainly characterized by the stable presence of Lactobacillus curvatus and Lactobacillus sakei, but Lactobacillus paracasei was also repeatedly detected. An important piece of evidence was the presence of Lactococcus garvieae, which clearly contributed in two fermentations. Several species of Staphylococcus were also detected. Regarding other bacterial groups, Bacillus sp., Ruminococcus sp., and Macrococcus caseolyticus were also identified at the beginning of the transformations. In addition, yeast species belonging to Debaryomyces hansenii, several Candida species, and Willopsis saturnus were observed in the DGGE gels. Finally, cluster analysis of the bacterial and yeast DGGE profiles highlighted the uniqueness of the fermentation processes studied.  相似文献   

2.
We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITS-RFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.  相似文献   

3.
The yeast species composition of 12 cocoa bean fermentations carried out in Brazil, Ecuador, Ivory Coast and Malaysia was investigated culture-independently. Denaturing gradient gel electrophoresis of 26S rRNA gene fragments, obtained through polymerase chain reaction with universal eukaryotic primers, was carried out with two different commercial apparatus (the DCode and CBS systems). In general, this molecular method allowed a rapid monitoring of the yeast species prevailing during fermentation. Under similar and optimal denaturing gradient gel electrophoresis conditions, the CBS system allowed a better separated band pattern than the DCode system and an unambiguous detection of the prevailing species present in the fermentation samples. The most frequent yeast species were Hanseniaspora sp., followed by Pichia kudriavzevii and Saccharomyces cerevisiae, independent of the origin of the cocoa. This indicates a restricted yeast species composition of the cocoa bean fermentation process. Exceptionally, the Ivorian cocoa bean box fermentation samples showed a wider yeast species composition, with Hyphopichia burtonii and Meyerozyma caribbica among the main representatives. Yeasts were not detected in the samples when the temperature inside the fermenting cocoa pulp-bean mass reached values higher than 45 °C or under early acetic acid production conditions.  相似文献   

4.
In this study, a polyphasic approach was used to study the ecology of fresh sausages and to characterize populations of lactic acid bacteria (LAB). The microbial profile of fresh sausages was monitored from the production day to the 10th day of storage at 4 degrees C. Samples were collected on days 0, 3, 6, and 10, and culture-dependent and -independent methods of detection and identification were applied. Traditional plating and isolation of LAB strains, which were subsequently identified by molecular methods, and the application of PCR-denaturing gradient gel electrophoresis (DGGE) to DNA and RNA extracted directly from the fresh sausage samples allowed the study in detail of the changes in the bacterial and yeast populations during storage. Brochothrix thermosphacta and Lactobacillus sakei were the main populations present. In particular, B. thermosphacta was present throughout the process, as determined by both DNA and RNA analysis. Other bacterial species, mainly Staphylococcus xylosus, Leuconostoc mesenteroides, and L. curvatus, were detected by DGGE. Moreover, an uncultured bacterium and an uncultured Staphylococcus sp. were present, too. LAB strains isolated at day 0 were identified as Lactococcus lactis subsp. lactis, L. casei, and Enterococcus casseliflavus, and on day 3 a strain of Leuconostoc mesenteroides was identified. The remaining strains isolated belonged to L. sakei. Concerning the yeast ecology, only Debaryomyces hansenii was established in the fresh sausages. Capronia mansonii was initially present, but it was not detected after the first 3 days. At last, L. sakei isolates were characterized by randomly amplified polymorphic DNA PCR and repetitive DNA element PCR. The results obtained underlined how different populations took over at different steps of the process. This is believed to be the result of the selection of the particular population, possibly due to the low storage temperature employed.  相似文献   

5.
In this study, the microbial ecology of three naturally fermented sausages produced in northeast Italy was studied by culture-dependent and -independent methods. By plating analysis, the predominance of lactic acid bacteria populations was pointed out, as well as the importance of coagulase-negative cocci. Also in the case of one fermentation, the fecal enterocci reached significant counts, highlighting their contribution to the particular transformation process. Yeast counts were higher than the detection limit (>100 CFU/g) in only one fermented sausage. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns and sequencing of the bands allowed profiling of the microbial populations present in the sausages during fermentation. The bacterial ecology was mainly characterized by the stable presence of Lactobacillus curvatus and Lactobacillus sakei, but Lactobacillus paracasei was also repeatedly detected. An important piece of evidence was the presence of Lactococcus garvieae, which clearly contributed in two fermentations. Several species of Staphylococcus were also detected. Regarding other bacterial groups, Bacillus sp., Ruminococcus sp., and Macrococcus caseolyticus were also identified at the beginning of the transformations. In addition, yeast species belonging to Debaryomyces hansenii, several Candida species, and Willopsis saturnus were observed in the DGGE gels. Finally, cluster analysis of the bacterial and yeast DGGE profiles highlighted the uniqueness of the fermentation processes studied.  相似文献   

6.
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40 degrees C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.  相似文献   

7.
The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed.  相似文献   

8.
Yeast diversity and persistence in botrytis-affected wine fermentations   总被引:1,自引:0,他引:1  
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected ("botrytized") wine fermentations carried out at high ( approximately 30 degrees C) and ambient ( approximately 20 degrees C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by SACCHAROMYCES: In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>10(6) cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of CANDIDA: Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

9.
Direct profiling of the yeast dynamics in wine fermentations   总被引:22,自引:0,他引:22  
We present a method to directly characterize the yeast diversity present in wine fermentations by employing denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 26S ribosomal RNA (rRNA) genes. PCR-DGGE of a portion of the 26S rRNA gene was shown to distinguish most yeast genera associated with the production of wine. With this method the microbial dynamics in several model wine fermentations were profiled. PCR-DGGE provided a qualitative assessment of the yeast diversity in these fermentations accurately identifying populations as low as 1000 cells ml(-1). PCR-DGGE represents an attractive alternative to traditional plating schemes for analysis of the microbial successions inherent in the fermentation of wine.  相似文献   

10.
The microbial ecology of "soppressata of Vallo di Diano," a traditional dry fermented sausage from southern Italy, was studied by using both culture-dependent and culture-independent approaches. The ripened fermented sausages were characterized by high microbial loads of both staphylococci and lactobacilli. Using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the variable V3 and V1 regions of the 16S rRNA gene and direct DNA sequencing, it was possible to identify Staphylococcus xylosus, S. succinus, and S. equorum among the staphylococci and Lactobacillus sakei and L. curvatus within the lactobacilli. Moreover, Debaryomyces hansenii was the main yeast species found by targeting the yeast 26S rRNA gene by PCR-DGGE. Selected strains of S. xylosus, L. sakei, and L. curvatus were characterized for their technological properties in the ripening conditions of the fermented sausages so as to select an autochthonous starter formulation. The selection included the determination of nitrate reductase, lipolytic, and antioxidant activity and proteolysis with myofibrillar and sarcoplasmic protein fractions. Such properties were evaluated in both in vitro and in situ assays; the latter were performed by using each strain as a starter in the laboratory-scale manufacture of soppressata of Vallo di Diano and by monitoring the microbiological and chemical changes at the end of ripening. The results show differences between the in vitro and in situ selection results and indicate that in situ evaluation of the technological performance of specific strains is better suited to selecting autochthonous starter cultures for fermented-meat products than in vitro evaluation.  相似文献   

11.
Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.  相似文献   

12.
AIMS: Evaluation of composition and evolution of the coagulase-negative staphylococci (CNS) communities in two traditionally fermented sausages (salsiccia and soppressata lucana) produced in Basilicata, southern Italy. METHODS AND RESULTS: A culture-dependent approach based on isolation on selective media and identification with phenotypic and molecular methods was used. Phenotypic data of 471 strains were analysed by multivariate statistical methods by using 28 strains from culture collections and 48 strains identified by molecular methods (such as 16S rDNA sequencing, species-specific PCR assays, intergenic spacer region-PCR and PCR-denaturing gradient gel electrophoresis) as a reference. The CNS microflora of the sausages was found to be dominated by different biotypes of Staphylococcus xylosus (51.2%), followed by S. pulvereri/vitulus, S. equorum and S. saprophyticus (13.4, 10.2 and 10%, respectively). Other species (S. succinus, S. pasteuri, S. epidermidis, S. warneri and Macrococcus caseolyticus) were also present at lower levels. Identification of 25% of the isolates was impossible. CONCLUSIONS: The composition of CNS communities varied significantly with sausage type, plant and ripening time and clear differences were found among communities of salsiccia and soppressata at the end of ripening. SIGNIFICANCE AND IMPACT OF THE STUDY: Phenotypic characterization, supported by molecular and statistical analyses, can be considered a useful approach for typing a large number of isolates and for monitoring the evolution of staphylococcal communities during sausage fermentation but does not always provide a satisfactory identification of the isolates.  相似文献   

13.
A set of Escherichia coli freshwater isolates was chosen to compare the effectiveness of denaturing gradient gel electrophoresis (DGGE) vs temporal temperature gradient gel electrophoresis (TTGE) for separating homologous amplicons from the respective uidA region differing in one to seven single base substitutions. Both methods revealed congruent results but DGGE showed a five to eight times higher spatial separation of the uidA amplicons as compared with TTGE, although the experiments were performed at comparable denaturing gradients. In contrast to TTGE, DGGE displayed clear and focused bands. The results strongly indicated a significantly higher discrimination efficiency of the spatial chemical denaturing gradient as compared with the temporal temperature denaturing gradient for separating the uidA amplicons. Denaturing gradient gel electrophoresis proved to be highly efficient in the differentiation of E. coli uidA sequence types.  相似文献   

14.
Several moderately halophilic gram-positive, spore-forming bacteria have been isolated by conventional enrichment cultures from damaged medieval wall paintings and building materials. Enrichment and isolation were monitored by denaturing gradient gel electrophoresis and fluorescent in situ hybridization. 16S ribosomal DNA analysis showed that the bacteria are most closely related to Halobacillus litoralis. DNA-DNA reassociation experiments identified the isolates as a population of hitherto unknown Halobacillus species.  相似文献   

15.
Campylobacter jejuni is a frequent cause of bacterial gastroenteritis in humans all over the world. Several molecular typing methods are used to study the epidemiology of Campylobacter spp. infections. The aim of the present study was to investigate the application of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) analysis as rapid primary subtyping methods for C. jejuni. A variable fragment from the 3' end of the flaA to the 3' end of the intergenic region, separating the flaA and flaB genes, was subjected to SSCP and DGGE analysis. A total of 48 clinical C. jejuni isolates, 49 C. jejuni strains isolated from poultry, 2 strains isolated from ducks and 1 strain isolated from a pheasant were assigned to 24 distinct SSCP patterns. Sequence analysis of the respective DNA fragments revealed that every different fla sequence type could be distinguished by SSCP. DGGE proved to be equally discriminatory. Both methods can be applied as primary subtyping methods, because pulsed-field gel electrophoresis (PFGE) and amplified fragment length polymorphism (AFLP) analysis further differentiated isolates belonging to the same fla sequence types.  相似文献   

16.
Samples of cocoa beans were taken on two separate occasions during heap and tray fermentations in Ghana, West Africa. In total 496 yeast isolates were identified by conventional microbiological analyses and by amplification of their ITS1-5.8S rDNA-ITS2 regions. For important species the identifications were confirmed by sequencing of the D1/D2 domain of the 5' end of the large subunit (26S) rDNA. Assimilations of organic acids and other carbon compounds were conducted. For dominant yeasts intraspecies variations were examined by determination of chromosome length polymorphism (CLP) using pulsed-field gel electrophoresis. For the heap fermentations maximum yeast cell counts of 9.1 x 10(7) were reached, whereas maximum yeast counts of 6.0 x 10(6) were reached for the tray fermentations. Candida krusei was found to be the dominant species during heap fermentation, followed by P. membranifaciens, P. kluyveri, Hanseniaspora guilliermondii and Trichosporon asahii, whereas Saccharomyces cerevisiae and P. membranifaciens were found to be the dominant species during tray fermentation followed by low numbers of C. krusei, P. kluyveri, H. guilliermondii and some yeast species of minor importance. For isolates within all dominant species CLP was evident, indicating that several different strains are involved in the fermentations. Isolates of C. krusei, P. membranifaciens, H. guilliermondii, T. asahii and Rhodotorula glutinis could be found on the surface of the cocoa pods and in some cases on the production equipment, whereas the origin of e.g. S. cerevisiae was not indicated by the results obtained. In conclusion, the results obtained show that fermentation of cocoa beans is a very inhomogeneous process with great variations in both yeast counts and species composition. The variations seem to depend especially on the processing procedure, but also the season and the post-harvest storage are likely to influence the yeast counts and the species composition.  相似文献   

17.
Different PCR-DGGE protocols were evaluated to monitor fermentation process and to investigate bacterial communities developed in two artisanal Argentinean fermented sausages. Bacterial universal primers frequently used in PCR-denaturing gradient gel electrophoresis (DGGE) were evaluated. Lactic acid bacteria (LAB) and staphylococci species isolated from Tucumán sausages were used to determine the experimental conditions for PCR amplification and DGGE differentiation. Total microbial DNA extracted directly from both fermented sausages was subjected to DGGE analysis. PCR-DGGE results were different for each set of primers used. Primers Bact-0124f(GC)-Uni-0515r and V1f(GC)-V1r showed to be efficient to differentiate LAB and Staphylococcus cultures while the set V3f(GC)-Uni-0515r allowed to demonstrate the succession of different Lactobacillus and Staphylococcus species during ripening process. An intense band corresponding to Lactobacillus sakei was observed to be present in both samples. Staphylococcus saprophyticus was only observed in Tucumán sausage while a band identified as Brochothrix thermophacta was detected in Córdoba sausage. PCR-DGGE analysis of different 16S rDNA amplicons was able to discriminate between LAB and Gram-positive, coagulase-negative cocci, resulting an effective tool to establish the microbiota developed in artisanal dry sausages.  相似文献   

18.
Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.  相似文献   

19.
We developed a rapid and sensitive identification method for the halotolerant yeast Debaryomyces hansenii, based on the hybridization of species-specific sequences. These sequences were first identified in a survey of D. hansenii strains by random amplification of polymorphic DNA (RAPD) as giving conserved bands in all isolates tested. Two such conserved RAPD products, termed F01pro and M18pro, were cloned from the type strain CBS 767. The specificity of these probes was assessed by hybridizing them to DNA from various species of yeasts commonly found in cheese. F01pro and M18pro hybridized to the DNA of all D. hansenii var. hansenii tested, but not to DNA of other yeast species including the closely related strain of D. hansenii var. fabryii CBS 789. Hybridization patterns of F01pro and M18pro on digested genomic DNA of D. hansenii indicated that the sequences were repeated in the genome of all D. hansenii var. hansenii tested, and gave distinct polymorphic patterns. The single F01pro probe generated 11 different profiles for 24 strains by restriction fragment length polymorphism, using one restriction enzyme. F01pro represents a new type of repeated element found in fungi, useful for both identification and typing of D. hansenii and, together with M18pro, simplifies the study of this species in complex flora.  相似文献   

20.
Several moderately halophilic gram-positive, spore-forming bacteria have been isolated by conventional enrichment cultures from damaged medieval wall paintings and building materials. Enrichment and isolation were monitored by denaturing gradient gel electrophoresis and fluorescent in situ hybridization. 16S ribosomal DNA analysis showed that the bacteria are most closely related to Halobacillus litoralis. DNA-DNA reassociation experiments identified the isolates as a population of hitherto unknown Halobacillus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号