首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous experiments, animals infected with SIVmac239 containing a point mutation in the vpr and nef genes developed AIDS-like symptoms after early reversion of the vpr and nef genes. Here we show that two animals in which the nef gene but not the vpr gene had reverted in the first few months did not develop disease during a 3-year observation period even after reversion to a functional vpr gene 70 weeks postinfection. To study the influence of a stable vpr mutation on virus load and pathogenesis, a 43-bp deletion was introduced into the vpr gene of SIVmac239on, a nef-open mutant of SIVmac239. Four rhesus monkeys were inoculated with the vpr deletion mutant (SIV delta vpr), and two control animals were infected with SIVmac239on. Both control animals had persistent antigenemia, high cell-associated virus loads, and elevated neopterin levels. They had to be euthanized 20 and 30 weeks postinfection because of AIDS-related symptoms. However, all four rhesus monkeys inoculated with SIV delta vpr showed only transiently detectable antigenemia. The cell-associated virus loads were high in three of the four animals. Two animals with AIDS-like symptoms had to be euthanized 71 and 73 weeks postinfection. The two remaining monkeys infected with SIV delta vpr were still alive 105 weeks postinfection. In contrast to the SIVmac239on-infected animals, SIV delta vpr-infected animals had strong humoral immune responses and intermittent cellular immune responses to SIV antigens. Our data show that a functional vpr gene is not necessary for pathogenesis. However, vpr-deficient SIVmac239 variants might be slightly attenuated, allowing some animals to resist progression to disease for an extended period of time.  相似文献   

2.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

3.
A nef gene is present in all primate lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaque monkeys (SIVmac). However, the nef genes of HIV-1 and SIVmac exhibit minimal sequence identity, and not all properties are shared by the two. Nef sequences of SIVmac239 were replaced by four independent nef alleles of HIV-1 in a context that was optimal for expression. The sources of the HIV-1 nef sequences included NL 4-3, a variant NL 4-3 gene derived from a recombinant-infected rhesus monkey, a patient nef allele, and a nef consensus sequence. Of 16 rhesus monkeys infected with these SHIVnef chimeras, 9 maintained high viral loads for prolonged periods, as observed with the parental SIVmac239, and 6 have died with AIDS 52 to 110 weeks postinfection. Persistent high loads were observed at similar frequencies with the four different SIV recombinants that expressed these independent HIV-1 nef alleles. Infection with other recombinant SHIVnef constructions resulted in sequence changes in infected monkeys that either created an open nef reading frame or optimized the HIV-1 nef translational context. The HIV-1 nef gene was uniformly retained in all SHIVnef-infected monkeys. These results demonstrate that HIV-1 nef can substitute for SIVmac nef in vivo to produce a pathogenic infection. However, the model suffers from an inability to consistently obtain persisting high viral loads in 100% of the infected animals, as is observed with the parental SIVmac239.  相似文献   

4.
To study the effect of interleukin-2 (IL-2) on simian immunodeficiency virus (SIV) replication, pathogenesis, and immunogenicity, we replaced the nef gene of SIVmac239 by the IL-2 coding region. The virus, designated SIV-IL2, stably expressed high levels of IL-2 in cell culture. In comparison to SIVmac239, SIV-IL2 replicated more efficiently in peripheral blood mononuclear cells in the absence of exogenously added IL-2. To determine whether this growth advantage would be of relevance in vivo, four juvenile rhesus monkeys were infected with SIV-IL2 and four monkeys were infected with a nef deletion mutant of SIV (SIVdeltaNU). After a peak in the cell-associated viral load 2 weeks postinfection, the viruses could barely be isolated 3 to 7 months postinfection. Mean capsid antigen levels were higher in the SIV-IL2 group than in the nef deletion group 2 weeks postinfection. Viruses reisolated from the SIV-IL2-infected animals expressed high levels of IL-2 during the acute phase of infection. Deletions in the IL-2 coding region of SIV-IL2 were observed in two of the SIV-IL2-infected macaques 3 months postinfection. Urinary neopterin levels, a marker for unspecific immune stimulation, were higher in the SIV-IL2-infected macaques than in SIVdeltaNU-infected animals during the acute phase of infection. The SIV-specific T-cell-proliferative response and antibody titers were similar in both groups. Cytotoxic T cells directed against viral antigens were detected in all SIV-IL2-infected macaques and in two of the SIVdeltaNU-infected animals. Expression of IL-2 did not seem to alter the attenuated phenotype of nef deletion mutants fundamentally, although there might have been a slight increase in virus replication and immune stimulation during the acute phase of infection. Deletion of the viral IL-2 gene 3 months postinfection could be a consequence of a selective disadvantage due to local coexpression of viral antigen and IL-2 in the presence of an antiviral immune response.  相似文献   

5.
Most rhesus macaques infected with simian immunodeficiency virus SIVmac239 with nef deleted (either Delta nef or Delta nef Delta vpr Delta US [Delta 3]) control viral replication and do not progress to AIDS. Some monkeys, however, develop moderate viral load set points and progress to AIDS. When simian immunodeficiency viruses (SIVs) recovered from two such animals (one Delta nef and the other Delta 3) were serially passaged in rhesus monkeys, the SIVs derived from both lineages were found to consistently induce moderate viral loads and disease progression. Analysis of viral sequences in the serially passaged derivatives revealed interesting changes in three regions: (i) an unusually high number of predicted amino acid changes (12 to 14) in the cytoplasmic domain of gp41, most of which were in regions that are usually conserved; these changes were observed in both lineages; (ii) an extreme shortening of nef sequences in the region of overlap with U3; these changes were observed in both lineages; and (iii) duplication of the NF-kappa B binding site in one lineage only. Neither the polymorphic gp41 changes alone nor the U3 deletion alone appeared to be responsible for increased replicative capacity because recombinant SIVmac239 Delta nef, engineered to contain either of these changes, induced moderate viral loads in only one of six monkeys. However, five of six monkeys infected with recombinant SIVmac239 Delta nef containing both TM and U3 changes did develop persisting moderate viral loads. These genetic changes did not increase lymphoid cell-activating properties in the monkey interleukin-2-dependent T-cell line 221, but the gp41 changes did increase the fusogenic activity of the SIV envelope two- to threefold. These results delineate sequence changes in SIV that can compensate for the loss of the nef gene to partially restore replicative and pathogenic potential in rhesus monkeys.  相似文献   

6.
To characterize the occurrence, frequency, and kinetics of retroviral recombination in vivo, we intravaginally inoculated rhesus macaques, either simultaneously or sequentially, with attenuated simian immunodeficiency virus (SIV) strains having complementary deletions in their accessory genes and various degrees of replication impairment. In monkeys inoculated simultaneously with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef, recombinant wild-type (wt) virus and wild-type levels of plasma viral RNA (vRNA) were detected in blood by 2 weeks postinoculation. In monkeys inoculated first with SIVmac239Deltavpx/Deltavpr and then with SIVmac239Deltanef, recombination occurred but was associated with lower plasma vRNA levels than plasma vRNA levels seen for monkeys inoculated intravaginally with wt SIVmac239. In one monkey, recombination occurred 6 weeks after the challenge with SIVmac239Deltanef when plasma SIVmac239Deltavpx/Deltavpr RNA levels were undetectable. In monkeys inoculated first with the more highly replicating strain, SIVmac239Deltanef, and then with SIVmac239Deltavpx/Deltavpr, wild-type recombinant virus was not detected in blood or tissues. Instead, a virus that had repaired the deletion in the nef gene by a compensatory mutation was found in one animal. Overall, recombinant SIV was eventually found in four of six animals intravaginally inoculated with the two SIVmac239 deletion mutants. These findings show that recombination can occur readily in vivo after mucosal SIV exposure and thus contributes to the generation of viral genetic diversity and enhancement of viral fitness.  相似文献   

7.
We examined the ability of a live, attenuated deletion mutant of simian immunodeficiency virus (SIV), SIVmac239Delta3, which is missing nef and vpr genes, to protect against challenge by heterologous strains SHIV89.6p and SIVsmE660. SHIV89.6p is a pathogenic, recombinant SIV in which the envelope gene has been replaced by a human immunodeficiency virus type 1 envelope gene; other structural genes of SHIV89.6p are derived from SIVmac239. SIVsmE660 is an uncloned, pathogenic, independent isolate from the same primate lentivirus subgrouping as SIVmac but with natural sequence variation in all structural genes. The challenge with SHIV89.6p was performed by the intravenous route 37 months after the time of vaccination. By the criteria of CD4(+) cell counts and disease, strong protection against the SHIV89.6p challenge was observed in four of four vaccinated monkeys despite the complete mismatch of env sequences. However, SHIV89.6p infection was established in all four previously vaccinated monkeys and three of the four developed fluctuating viral loads between 300 and 10,000 RNA copy equivalents per ml of plasma 30 to 72 weeks postchallenge. When other vaccinated monkeys were challenged with SIVsmE660 at 28 months after the time of vaccination, SIV loads were lower than those observed in unvaccinated controls but the level of protection was less than what was observed against SHIV89.6p in these experiments and considerably less than the level of protection against SIVmac251 observed in previous experiments. These results demonstrate a variable level of vaccine protection by live, attenuated SIVmac239Delta3 against heterologous virus challenge and suggest that even live, attenuated vaccine approaches for AIDS will face significant hurdles in providing protection against the natural variation present in field strains of virus. The results further suggest that factors other than anti-Env immune responses can be principally responsible for the vaccine protection by live, attenuated SIV.  相似文献   

8.
The pathogenesis of AIDS virus infection in a nonhuman primate AIDS model was studied by comparing plasma viral loads, CD4(+) T-cell subpopulations in peripheral blood mononuclear cells, and simian immunodeficiency virus (SIV) infection in lymph nodes for rhesus macaques infected with a pathogenic molecularly cloned SIVmac239 strain and those infected with its nef deletion mutant (Deltanef). In agreement with many reports, whereas SIVmac239 infection induced AIDS and depletion of memory CD4(+) T cells in 2 to 3 years postinfection (p.i.), Deltanef infection did not induce any manifestation associated with AIDS up to 6.5 years p.i. To explore the difference in SIV infection in lymphoid tissues, we biopsied lymph nodes at 2, 8, 72, and 82 weeks p.i. and analyzed them by pathological techniques. Maximal numbers of SIV-infected cells (SIV Gag(+), Env(+), and RNA(+)) were detected at 2 weeks p.i. in both the SIVmac239-infected animals and the Deltanef-infected animals. In the SIVmac239-infected animals, most of the infected cells were localized in the T-cell-rich paracortex, whereas in the Deltanef-infected animals, most were localized in B-cell-rich follicles and in the border region between the paracortex and the follicles. Analyses by double staining of CD68(+) macrophages and SIV Gag(+) cells and by double staining of CD3(+) T cells and SIV Env(+) cells revealed that SIV-infected cells were identified as CD4(+) T cells in either the SIVmac239 or the Deltanef infection. Whereas the many functions of Nef protein were reported from in vitro studies, our finding of SIVmac239 replication in the T-cell-rich paracortex in the lymph nodes supports the reported roles of Nef protein in T-cell activation and enhancement of viral infectivity. Furthermore, the abundance of SIVmac239 infection and the paucity of Deltanef infection in the T-cell-rich paracortex accounted for the differences in viral replication and pathogenicity between SIVmac239 and the Deltanef mutant. Thus, our in vivo study indicated that the nef gene enhances SIV replication by robust productive infection in memory CD4(+) T cells in the T-cell-rich region in lymphoid tissues.  相似文献   

9.
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Δnef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Δnef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (105 to 107 RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Δnef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Δnef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.  相似文献   

10.
Rhesus monkeys (Macaca mulatta) were infected with five strains of simian immunodeficiency virus (SIV) derived from SIVmac239 containing deletions (delta) or substitutions (subst) in NF-kappaB and Sp1 binding sites. We have shown previously that mutations in these regions still allow efficient SIVmac replication in primary lymphoid cell cultures (P. O. Ilyinskii and R. C. Desrosiers, J. Virol. 70:3118-3126, 1996). Two animals were inoculated intravenously with each mutant strain of SIVmac239: delta NFkappaB, delta Sp1234, delta NFkappaB delta Sp1234, substSp12, and substSp1234. All but one of the infected animals showed an early spike in plasma antigenemia, maintained high virus burdens, and had significant changes in lymphoid tissues, and six died with AIDS within the first 60 weeks of infection. One of the animals infected with the SIV strain delta NFkappaB delta Sp1234 showed lower levels of plasma antigenemia and lower virus burdens; the other animal infected with this same mutant strain died with AIDS 17 weeks after inoculation. No consistent novel mutations or reversions were detected in proviral sequences derived from the animals infected with the deletion mutants and the substSp12 mutant by 20 weeks postinfection. Point-mutated sequences were partially deleted in both animals infected with the substSp1234 strain. These results indicate that the NF-kappaB and Sp1 binding sites are not essential for the induction of AIDS by SIVmac239. They also provide indirect evidence for the importance of a novel enhancer element in the U3 region of the SIVmac long terminal repeat that is located immediately upstream of the NF-kappaB binding site within the C-terminal region of the nef coding sequence.  相似文献   

11.
Rhesus macaques infected with simian immunodeficiency virus (SIV) containing either a large nef deletion (SIVmac239Delta(152)nef) or interleukin-2 in place of nef developed high virus loads and progressed to simian AIDS. Viruses recovered from both juvenile and neonatal macaques with disease produced a novel truncated Nef protein, tNef. Viruses recovered from juvenile macaques infected with serially passaged virus expressing tNef exhibited a pathogenic phenotype. These findings demonstrated strong selective pressure to restore expression of a truncated Nef protein, and this reversion was linked to increased pathogenic potential in live attenuated SIV vaccines.  相似文献   

12.
Progression to AIDS in the absence of a gene for vpr or vpx.   总被引:28,自引:22,他引:6       下载免费PDF全文
Rhesus monkeys (Macaca mulatta) were experimentally infected with strains of simian immunodeficiency virus (SIV) derived from SIVmac239 lacking vpr, vpx, or both vpr and vpx genes. These auxiliary genes are not required for virus replication in cultured cells but are consistently conserved within the SIVmac/human immunodeficiency virus type 2/SIVsm group of primate lentiviruses. All four rhesus monkeys infected with the vpr deletion mutant showed an early spike in plasma antigenemia, maintained high virus burdens, exhibited declines in CD4+ lymphocyte concentrations, and had significant changes in lymph node morphology, and two have died to date with AIDS. The behavior of the vpr deletion mutant was indistinguishable from that of the parental, wild-type virus. Rhesus monkeys infected with the vpx deletion mutant showed lower levels of plasma antigenemia, lower virus burdens, and delayed declines in CD4+ lymphocyte concentrations but nonetheless progressed with AIDS to a terminal stage. The vpr+vpx double mutant was severely attenuated, with much lower virus burdens and no evidence of disease progression. These and other results indicate that vpr provides only a slight facilitating advantage for wild-type SIVmac replication in vivo. Thus, progression to AIDS and death can occur in the absence of a gene for vpr or vpx.  相似文献   

13.
Competitive PCR was used to evaluate the expression of cytokine, granzyme B, and chemokine genes in lymph nodes of macaques recently infected with the simian immunodeficiency virus (SIV) pathogenic molecular clone SIVmac239 (n = 16), the nonpathogenic vaccine strain SIVmac239 delta nef (n = 8), and the nonpathogenic molecular clone SIVmac1A11 (n = 8). For both SIVmac239 and its nef-deleted derivative, strong expression was observed as early as 7 days postinfection for interleukin 1beta (IL-1beta), IL-6, tumor necrosis factor alpha, gamma interferon, and IL-13. The levels of gene induction were equally intense for both viruses despite a lower viral load for SIVmac239 deltanef compared with that for SIVmac239. However, the nature of the cytokine network activation varied with the viral inocula. Primary infection with SIVmac239 was characterized by a higher level of IL-4, IL-10, MIP-1alpha, MIP-1beta, MCP-1, and RANTES gene expression and a lower level of IL-12 and granzyme B gene expression compared with infection with SIVmac239 delta nef. Thus, infection with nef-deleted SIV was associated with a preferential Th1 versus Th2 pattern of cytokine production. Infection with SIVmac1A11 was characterized by a delayed immune response for all markers tested. The unique patterns of cytokine and chemokine gene expression in lymph nodes correlated nicely with the pathogenic potential of the SIV strains used as well as with differences in their ability to serve as protective vaccines.  相似文献   

14.
Three different deletion mutants of simian immunodeficiency virus (SIV) that vary in their levels of attenuation were tested for the ability to protect against mucosal challenge with pathogenic SIV. Four female rhesus monkeys were vaccinated by intravenous inoculation with SIVmac239Delta3, four with SIVmac239Delta3X, and four with SIVmac239Delta4. These three vaccine strains exhibit increasing levels of attenuation: Delta3 < Delta3X 相似文献   

15.
Different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccine vectors expressing the same viral antigens can elicit disparate T-cell responses. Within this spectrum, replicating variable vaccines, like SIVmac239Δnef, appear to generate particularly efficacious CD8(+) T-cell responses. Here, we sequenced T-cell receptor β-chain (TRB) gene rearrangements from immunodominant Mamu-A 01-restricted Tat(28-35)SL8-specific CD8(+) T-cell populations together with the corresponding viral epitope in four rhesus macaques during acute SIVmac239Δnef infection. Ultradeep pyrosequencing showed that viral variants arose with identical kinetics in SIVmac239Δnef and pathogenic SIVmac239 infection. Furthermore, distinct Tat(28-35)SL8-specific T-cell receptor (TCR) repertoires were elicited by SIVmac239Δnef compared to those observed following a DNA/Ad5 prime-boost regimen, likely reflecting differences in antigen sequence stability.  相似文献   

16.
Live attenuated simian immunodeficiency virus (SIV) is the most efficient vaccine yet developed in monkey models of human immunodeficiency virus infection. In all successful vaccine trials, attenuation was achieved by inactivating at least the nef gene. We investigated some virological and immunological characteristics of five rhesus macaques immunized with a nef-inactivated SIVmac251 molecular clone (SIVmac251Deltanef) and challenged 15 months later with the pathogenic SIVmac251 isolate. Three animals were killed 2 weeks postchallenge (p.c.) to search for the challenge virus and to assess immunological changes in various organs. The other two animals have been monitored up for 7 years p.c., with clinical and nef gene changes being noted. The animals killed showed no increase in viral load and no sign of a secondary immune response, although the challenged virus was occasionally detected by PCR. In one of the monkeys being monitored, the vaccine virus persisted and an additional deletion occurred in nef. In the other monkey that was monitored, the challenge and the vaccine (Deltanef) viruses were both detected by PCR until a virus with a hybrid nef allele was isolated 48 months p.c. This nef hybrid encodes a 245-amino-acid protein. Thus, our results show (i) that monkeys were not totally protected against homologous virus challenge but controlled the challenge very efficiently in the absence of a secondary immune response, and (ii) that the challenge and vaccine viruses may persist in a replication-competent form for long periods after the challenge, possibly resulting in recombination between the two viruses.  相似文献   

17.
Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxphi) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (DeltaGY). To assess the in vivo replication competence, all viruses contained a stop codon in nef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239DeltaGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4(+) T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239DeltaGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nef stop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxphi signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.  相似文献   

18.
We previously described the pattern of sequence variation in gp120 following persistent infection of rhesus monkeys with the pathogenic simian immunodeficiency virus SIVmac239 molecular clone (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843, 1991). Sequence changes were confined largely to five variable regions (V1 to V5), four of which correspond to human immunodeficiency virus type 1 (HIV-1) gp120 variable regions. Remarkably, 182 of 186 nucleotide substitutions that were documented in these variable regions resulted in amino acid changes. This is an extremely nonrandom pattern, which suggests selective pressure driving amino acid changes in discrete variable domains. In the present study, we investigated whether neutralizing-antibody responses are one selective force responsible at least in part for the observed pattern of sequence variation. Variant env sequences called 1-12 and 8-22 obtained 69 and 93 weeks after infection of a rhesus monkey with cloned SIVmac239 were recombined into the parental SIVmac239 genome, and variant viruses were generated by transfection of cultured cells with cloned DNA. The 1-12 and 8-22 recombinants differ from the parental SIVmac239 at 18 amino acid positions in gp120 and at 5 and 10 amino acid positions, respectively, in gp41. Sequential sera from the monkey infected with cloned SIVmac239 from which the 1-12 and 8-22 variants were isolated showed much higher neutralizing antibody titers to cloned SIVmac239 than to the cloned 1-12 and 8-22 variants. For example, at 55 weeks postinfection the neutralizing antibody titer against SIVmac239 was 640 while those to the variant viruses were 40 and less than 20. Two other rhesus monkeys infected with cloned SIVmac239 showed a similar pattern. Rhesus monkeys were also experimentally infected with the cloned variants so that the type-specific nature of the neutralizing antibody responses could be verified. Indeed, each of these monkeys showed neutralizing-antibody responses of much higher titer to the homologous variant used for infection. These experiments unambiguously demonstrate that SIV mutants resistant to serum neutralization arise during the course of persistent infection of rhesus monkeys.  相似文献   

19.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号