首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
H2-O/HLA-DO are MHC class II accessory molecules that modulate exogenous Ag presentation. Most class II accessory molecules are expressed in all professional APC; however, H2-O is only expressed in B cells and medullary thymic epithelial cells. Because B cells present exogenous Ags and superantigens (SAgs), and medullary thymic epithelial cells are specialized APC for self Ags during negative selection in the thymus, we have hypothesized that H2-O might play a role in MHC class II-restricted SAg and self Ag presentation. In this study, we demonstrate that H2-O expression inhibits presentation of the bacterial SAgs staphylococcal enterotoxins A and B to four SAg-reactive T hybridoma cells. In contrast, H2-O has no effect on presentation of endogenous self Ags, as measured by tumorigenicity in vivo and Ag presentation to three self Ag-specific T hybridoma cells. Additional experiments suggest that H2-O inhibits presentation of exogenous Ags by both newly synthesized and recycling MHC class II molecules. These data suggest H2-O may have a physiological role in tolerance induction and SAg-mediated toxic shock.  相似文献   

2.
The involvement of the MHC in the recognition of Ag by avian T lymphocytes was analyzed. PBL from chickens primed with keyhole limpet hemocyanin in vivo were induced to synthesize DNA in an in vitro response to specific Ag. Responding cells were T cells as judged by immunofluorescence staining. In vivo Ag-primed PBL were stimulated in vitro with specific Ag and further propagated in the presence of IL-2. Subsequent Ag-specific T cell proliferation required the presence of Ag-pulsed peripheral blood adherent cells (APC). T cell responses were restricted by the MHC of the APC; Ag presented by allogeneic APC did not support T cell proliferation. By using MHC-recombinant chicken lines, the gene products controlled by MHC class II loci were shown to restrict the T cell-APC interaction. This conclusion was substantiated by the inhibition of the Ag-specific T cell response by a mAb against chicken MHC class II gene products but not by a mAb against chicken MHC class I gene products.  相似文献   

3.
In this study we show that like MHC class I and class II molecules, cell surface CD1d expression on APC is regulated and affects T cell activation under physiological conditions. Although IFN-gamma alone is sufficient for optimum expression of MHC, CD1d requires two signals, one provided by IFN-gamma and a second mediated by microbial products or by the proinflammatory cytokine TNF. IFN-gamma-dependent CD1d up-regulation occurs on macrophages following infection with live bacteria or exposure to microbial products in vitro and in vivo. APC expressing higher CD1d levels more efficiently activate NKT cell hybridomas and primary NKT cells independently of whether the CD1d-restricted TCR recognizes foreign or self-lipid Ags. Our findings support a model in which CD1d induction regulates NKT cell activation.  相似文献   

4.
IFN-gamma is an essential component of the early Listeria monocytogenes-specific immune response, and is also an important regulator of Ag processing and presentation. Ag presentation is required for the induction and also the effector function of antimicrobial T cells. To evaluate the effect of IFN-gamma on bacterial Ag presentation in vivo, macrophages and dendritic cells were separated from L. monocytogenes-infected tissues and analyzed with peptide-specific CD4 and CD8 T cell lines in a sensitive ELISPOT-based ex vivo Ag presentation assay. The comparison of professional APCs isolated from infected IFN-gamma-deficient and wild-type mice revealed different peptide presentation patterns of L. monocytogenes-derived CD8 T cell epitopes, while the presentation pattern of CD4 T cell epitopes remained unchanged. The further in vitro analysis of the generation of CD8 T cell epitopes revealed a peptide-specific effect of IFN-gamma on MHC class I-restricted Ag presentation. These results show that despite this modulation of the Ag presentation pattern of CD8 T cell epitopes, IFN-gamma is not generally required for the MHC class I- and MHC class II-restricted presentation of L. monocytogenes-derived antigenic peptides by professional APCs in vivo.  相似文献   

5.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

6.
Available evidence suggests that immune cells from neonates born to mothers with placental Plasmodium falciparum (Pf) infection are sensitized to parasite Ag in utero but have reduced ability to generate protective Th1 responses. In this study, we detected Pf Ag-specific IFN-gamma(+) T cells in cord blood from human neonates whose mothers had received treatment for malaria or who had active placental Pf infection at delivery, with responses being significantly reduced in the latter group. Active placental malaria at delivery was also associated with reduced expression of monocyte MHC class I and II in vivo and following short term in vitro coculture with Pf Ag compared with levels seen in neonates whose mothers had received treatment during pregnancy. Given that APC activation and Th1 responses are driven in part by IFN-gamma and down-regulated by IL-10, we examined the role of these cytokines in modulating the Pf Ag-specific immune responses in cord blood samples. Exogenous recombinant human IFN-gamma and neutralizing anti-human IL-10 enhanced T cell IFN-gamma production, whereas recombinant human IFN-gamma also restored MHC class I and II expression on monocytes from cord blood mononuclear cells cocultured with Pf Ag. Accordingly, active placental malaria at delivery was associated with increased frequencies of Pf Ag-specific IL-10(+)CD4(+) T cells in cord blood mononuclear cell cultures from these neonates. Generation and maintenance of IL-10(+) T cells in utero may thus contribute to suppression of APC function and Pf Ag-induced Th1 responses in newborns born to mothers with placental malaria at delivery, which may increase susceptibility to infection later in life.  相似文献   

7.
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappa B inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappa B inhibitor, signal phosphorylation of TCR zeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappa B determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappa B(-)CD40(-)class II(+) DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to "prime" or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.  相似文献   

8.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

9.
Activated human T cells express MHC class II and have been shown to present foreign Ag to autologous T cells. We now demonstrate that MHC class II+ T cell clones can present myelin basic protein (MBP) peptide autoantigen in the absence of traditional APC to autologous MBP reactive T cell clones. MBP peptide-pulsed T cell clones specifically stimulated autologous MBP-reactive T cell clones to flux calcium and proliferate. Activation responses were peptide epitope specific and blocked by mAb to MHC class II, indicating a TCR-mediated response. In addition, mAb to the adhesion molecules LFA-3, CD2, LFA-1, CD29, and to the tyrosine phosphatase CD45 also inhibited proliferation, indicating the involvement of T to T cell interactions. In contrast to peptide Ag, T cell clones did not respond to autologous T cells pulsed with HPLC-purified MBP, suggesting that T cells are unable to process whole MBP. However, batch-purified MBP Ag preparations containing lower m.w. breakdown products were presented by T cells, indicating that naturally occurring breakdown products of autoantigens could be presented by activated T cells in vivo. These results raise the possibility that T cell presentation of autoantigen at inflammatory sites may be important in regulation of immune responses to self Ag.  相似文献   

10.
11.
In this study, we investigated the role of the inducible form of heat shock protein 70 (hsp70) in the presentation of the major putative autoantigen in multiple sclerosis, myelin basic protein (MBP), in the context of appropriate MHC class II. By coimmunoprecipitation, we found that MBP is associated with hsp70 in APC in an ATP/ADP-dependent manner. Additionally, using confocal microscopy, hsp70 was detected in the endocytic pathway of APC, where it colocalized with MBP and HLA-DR. The immunodominant epitopes of MBP 85-99 and 80-99 were shown to bind selectively and specifically to hsp70 by surface plasmon resonance. The functional significance of MBP interaction with hsp70 was demonstrated by the detection of enhanced responses of an MBP-specific T cell hybridoma to MBP and MBP 80-99 with increasing levels of hsp70 and reduced responses when hsp70 expression was diminished within APC-expressing DRA*0101, DRB1*1501 (DR1501). However, when MBP 85-99 was used as the stimulus, T cell hybridoma responses were not enhanced by hsp70 overexpression within APC, suggesting that hsp70 contributes to Ag processing rather than Ag presentation. The importance of a direct association between MBP and hsp70 in the presentation pathways was demonstrated by enhanced efficacy of MBP presentation by APC transfected with a plasmid vector encoding a fusion hsp70-MBP protein. This is the first report on the involvement of self-inducible hsp70 in MHC class II-dependent autoantigen processing by APC. It implicates that aberrant self hsp expression may lead to the enhancement/modulation of autoimmune responses.  相似文献   

12.
Effective protection against Listeria monocytogenes requires Ag-specific CD8(+) T cells. A substantial proportion of CD8(+) T cells activated during L. monocytogenes infection of C57BL/6 mice are restricted by the MHC class Ib molecule H2-M3. In this study, an H2-M3-restricted CD8(+) T cell clone specific for a known H2-M3 epitope (fMIGWII) was generated from L. monocytogenes-infected mice. The clone was cytotoxic, produced IFN-gamma, and could mediate strong protection against L. monocytogenes when transferred to infected mice. Macrophages pulsed with heat-killed LISTERIAE: presented Ag to the clone in a TAP-independent manner. Both TAP-independent and -dependent processing occurred in vivo, as TAP-deficient mice infected with L. monocytogenes were partially protected by adoptive transfer of the clone. This is the first example of CD8(+) T cell-mediated, TAP-independent protection against a pathogen in vivo, confirming the importance of alternative MHC class I processing pathways in the antibacterial immunity.  相似文献   

13.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

14.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

15.
The cells recognize a bimolecular ligand composed of a self Ia molecule and a fragment of foreign Ag that has been processed by an APC. The effect of self proteins on the processing and presentation of foreign Ag was examined in order to ascertain the mechanisms for competition between foreign and self Ag. How this competition can be overcome to allow an efficient immune response was also examined. Normal mouse serum proteins (NMS) compete for the processing and presentation of the foreign Ag bovine RNase by APC. This competition could have occurred at any of three levels in the APC: 1) Ag uptake, 2) Ag processing, or 3) the binding of Ag to an Ia molecule. No competition for either the uptake or the processing of RNase by self proteins could be demonstrated. However, self peptides do compete with foreign Ag by binding directly to Ia molecules, as has been shown previously. Thus, the observed inhibition by NMS of Ag presentation occurred because of competition for binding to the Ia molecule. We hypothesized that during the generation of an immune response this competition is overcome by enhanced uptake of foreign Ag. To test this, we compared the ability of NMS to compete for the presentation of RNase when it entered the APC via fluid-phase pinocytosis or through receptor-mediated uptake via the mannose receptor. When the RNase entered the APC through the mannose receptor, the ability of NMS to compete was dramatically reduced. Thus, self proteins constitutively compete for the presentation of foreign Ag at the level of binding to an Ia molecule, and this competition can be overcome by receptor-mediated uptake of the Ag.  相似文献   

16.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

17.
Acid-sensitive liposomes have been developed for cytosolic delivery of encapsulated substances. We now demonstrate delivery of liposome-encapsulated Ag into the class I MHC Ag processing pathway in peritoneal macrophages in vitro using several types of acid-sensitive liposomes, including those composed of dioleoylphosphatidylethanolamine (DOPE)/palmitoylhomocysteine, DOPE/cholesterol hemisuccinate, DOPE/dioleoylsuccinylglycerol, and DOPE/dipalmitoylsuccinylglycerol. Our previous studies showed that acid-resistant liposomes (dioleoylphosphatidylcholine/dioleoylphosphatidylserine) did not engender class I-mediated presentation in vitro. However, in vivo immunization with OVA encapsulated in acid-resistant as well as acid-sensitive liposomes generated class I MHC-restricted T cell responses, as determined by subsequent in vitro cytotoxicity assays using OVA-transfected target cells. Target lysis by these cells was OVA- and class I MHC (Kb)-specific. This response was not generated by immunization with equivalent amounts of soluble OVA. Thus, a pathway for in vivo class I processing of Ag encapsulated in acid-resistant liposomes has been missed in vitro, perhaps because it is dependent on specific populations of APC or interactions between cells that have not been reconstituted in vitro. This pathway may explain the ability of many exogenous particulate Ag (liposomes, bacteria, parasites, and mammalian cells) to generate class I MHC-restricted T cell responses.  相似文献   

18.
Substantial CD8(+) T cell responses are generated after infection of mice with recombinant Listeria monocytogenes strains expressing a model epitope (lymphocytic choriomeningitis virus NP(118-126)) in secreted and nonsecreted forms. L. monocytogenes gains access to the cytosol of infected cells, where secreted Ags can be accessed by the endogenous MHC class I presentation pathway. However, the route of presentation of the nonsecreted Ag in vivo remains undefined. In this study we show that neutrophil-enriched peritoneal exudate cells from L. monocytogenes-infected mice can serve as substrates for in vitro cross-presentation of both nonsecreted and secreted Ag by dendritic cells as well as for in vivo cross-priming of CD8(+) T cells. In addition, specific neutrophil depletion in vivo by low dose treatment with either of two Ly6G-specific mAb substantially decreased the relative CD8(+) T cell response against the nonsecreted, but not the secreted, Ag compared with control Ab-treated mice. Thus, neutrophils not only provide rapid innate defense against infection, but also contribute to shaping the specificity and breadth of the CD8(+) T cell response. In addition, cross-presentation of bacterial Ags from neutrophils may explain how CD8(+) T cell responses are generated against Ags from extracellular bacterial pathogens.  相似文献   

19.
The participation of the host in eliminating Ag-specific T hybridoma cells after their in vivo activation was studied. In our model system, treatment of the cytochrome c-specific T cell hybridoma 2B4.11 in vitro with Ag in the context of histocompatible APC results in cellular activation, as shown by IL-2 release and growth inhibition. In vivo treatment with Ag results in tumor cell elimination as a result both of a direct inhibitory effect of cytochrome c that is mediated through the 2B4.11 TCR and to the induction of host immunity. In vivo lymphocyte-depletion studies showed that CD8-bearing cells were critical to the successful elimination of tumor cells mediated by Ag, whereas depletion of CD4-bearing cells had only minor effects on the outcome. Cytotoxic cells from mice cured by Ag treatment lysed only 2B4.11 among a panel of related tumors, although in vivo cross-protection studies showed that 2B4.11-immune mice were also resistant to the growth of BW5147 and C10.9. Because spleen cells from 2B4.11 immune mice did not recognize 2B4.11 or other related tumors in proliferation assays, we concluded that a participant(s) with memory and specificity, not assayed in vitro, was also involved in the mediation of the immune effects observed. For therapies based on the use of less selective agents, i.e. mAb that share the activating properties of Ag but can react with T cell neoplasms of unknown specificity, it would appear that a relatively intact immune system is required for maximal success.  相似文献   

20.
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号