首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We ascertained the ability to detect fibrillar β-lactoglobulin (BLG) of a series of mono-, tri-, penta-, and heptamethinecyanines based on benzothiazole and benzimidazole heterocycles, and of benzothiazole squaraine. Fluorescence properties of these cyanine dyes were measured in the unbound state and in the presence of monomeric and fibrillar BLG and compared with those for the commercially available benzothiazole dye Thioflavin T. The correlation between the chemical nature of the dye molecules and the ability of dyes to bind aggregated proteins was established. We found that meso-substituted cyanines with amino substituents in heterocycle in contrast to the corresponding unsubstituted dyes have a binding preference to fibrillar BLG and a noticeable fluorescence response in the presence of the aggregated protein. For the squaraines and benzimidazole penthamethinecyanines studied, fluorescence emission increased both in the presence of native and fibrillar protein. The trimethinecyanines T-49 and SH-516 exhibit specifically increased fluorescence in the presence of fibrillar BLG. These dyes demonstrated the same or higher emission intensity and selectivity to aggregated BLG as Thioflavin T, and are proposed for application in selective fluorescent detection of aggregated proteins.  相似文献   

2.
With the aim of searching of novel amyloid-specific fluorescent probes the ability of series of mono- and trimethine cyanines based on benzothiazole, pyridine and quinoline heterocycle end groups to recognize fibrillar formations of alpha-synuclein (ASN) was studied. For the first time it was revealed that monomethine cyanines can specifically increase their fluorescence in aggregated ASN presence. Dialkylamino-substituted monomethine cyanine T-284 and meso-ethyl-substituted trimethine cyanine SH-516 demonstrated the higher emission intensity and selectivity to aggregated ASN than classic amyloid stain Thioflavin T, and could be proposed as novel efficient fluorescent probes for fibrillar ASN detection. Studies of structure-function dependences have shown that incorporation of amino- or diethylamino- substituents into the 6-position of the benzothiazole heterocycle yields in a appearance of a selective fluorescent response to fibrillar alpha-synuclein presence. Performed calculations of molecular dimensions of studied cyanine dyes gave us the possibility to presume, that dyes bind with their long axes parallel to the fibril axis via insertion into the neat rows (so called 'channels') running along fibril.  相似文献   

3.
The effect of various N,N′-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42.  相似文献   

4.
Three new benzazole isothiocyanate fluorescent dyes, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzoxazole, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzothiazole and 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzimidazole were synthesised, purified until optical purity grade and characterised by spectroscopic techniques. UV/VIS and steady-state fluorescence were also applied to characterise the photophysical behaviour of the dyes. These dyes exhibit an intense fluorescence emission with a large Stokes shift, inherent to the class of benzazoles which relax by the excited state intramolecular proton transfer (ESIPT) mechanism. The dyes were studied for labeling bovine serum albumin (BSA), resulting conjugates BSA-dye with a remarkable photostability under UV/VIS radiation in relation to classical protein labels. The resulting conjugates presented fluorescence in the blue-green region. Direct fluorescence detection of protein-labeled with those dyes after polyacrylamide gel electrophoresis indicates their potential use as fluorescent probes for proteins.  相似文献   

5.
Thioflavin T is a benzothiazole dye that exhibits enhanced fluorescence upon binding to amyloid fibrils and is commonly used to diagnose amyloid fibrils, both ex vivo and in vitro. In aqueous solutions, thioflavin T was found to exist as micelles at concentrations commonly used to monitor fibrils by fluorescence assay ( approximately 10-20 microM). Specific conductivity changes were measured at varying concentration of thioflavin T and the critical micellar concentration was calculated to be 4.0+/-0.5 microM. Interestingly, changes in the fluorescence excitation and emission of thioflavin T were also dependent on the micelle formation. The thioflavin T micelles of 3 nm diameter were directly visualized using atomic force microscopy, and bound thioflavin T micelles were observed along the fibril length for representative fibrils. Increasing concentration of thioflavin T above the critical micellar concentration shows increased numbers of micelles bound along the length of the amyloid fibrils. Thioflavin T micelles were disrupted at low pH as observed by atomic force microscopy and fluorescence enhancement upon binding of thioflavin T to amyloid fibrils also reduced by several-fold upon decreasing the pH to below 3. This suggests that positive charge on the thioflavin T molecule has a role in its micelle formation that then bind the amyloid fibrils. Our data suggests that the micelles of thioflavin T bind amyloid fibrils leading to enhancement of fluorescence emission.  相似文献   

6.
Thioflavin T (ThT) becomes fluorescent in the presence of the G-quadruplex structure such as that formed by the human telomeric motif. In this report, we extend and generalize these observations and show that this dye may be used as a convenient and specific quadruplex probe. In the presence of most, but not all, G4-forming sequences, we observed a large increase in ThT fluorescence emission, whereas the presence of control duplexes and single strands had a more limited effect on emission. This differential behavior allowed us to design a high-throughput assay to detect G4 formation. Hundreds of different oligonucleotides may be tested in parallel for G4 formation with a simple fluorescence plate reader. We applied this technique to a family of aptamers not previously recognized as G4-forming sequences and demonstrated that ThT fluorescence signal may be used to predict G4 formation.  相似文献   

7.
M Palutke  D KuKuruga  D Wolfe  A Roher 《Cytometry》1987,8(5):494-499
Amyloid plaque core protein (APCP) of Alzheimer's disease obtained from brain tissue homogenate is difficult to recover in pure form, primarily because of contaminating lipofuscin (LF) granules. Thioflavin T, a fluorescent dye previously used to stain amyloid, was found to bind to APCP but not to lipofuscin. The latter, however, is autofluorescent. Fluorometric studies showed that at 370 nm excitation APCP has a maximal emission at 418 nm, whereas the autofluorescent LP has a maximal emission at 450 nm. This difference in emission permitted the use of a flow cytometer-sorter (FACS 440) for purification of APCP. APCP particles fluoresced distinctly from LF granules on the log blue fluorescence parameter. The two entities were sorted using forward light scatter versus fluorescence. A collection apparatus was designed and prepared to facilitate the collection of large volumes of sheath fluid and particles and to minimize fragmentation of particles during the collection process. The sorted APCP fraction was 98% pure. This work demonstrates how old dyes can be used to perform new tricks and provide a useful method for separating complex protein.  相似文献   

8.
The spectral luminescent properties of two groups of monomethine cyanine dyes were studied in the presence of DNA. The first group included five dyes with 5,6-methylenedioxy-[d]-benzo-1,3-thiazole heterocycle and their unsubstituted analogs. Five monomethine pyrylium cyanines and their N-methyl-pyridine analogs were included in the second group. In each pair the pyrylium and pyridine dyes had similar geometry but differed in charge density distribution. The results presented some evidence in favor of the half-intercalation interaction mode between the studied dyes and DNA. When the benzothiazole residue had the lowest electron donor ability between the two heterocycles in the dye molecule, its substitution with the bulky methylenedioxy group led to a significant decrease in fluorescence enhancement of the dye-DNA complex. On the contrary, when the substituents that create steric hindrance (e.g., methylenedioxy and methyl groups) were introduced into the heterocycle with the higher electron donor ability, the fluorescence enhancement value of the dye-DNA complex was virtually unchanged. The changes in the Stock's shift values upon the formation of the dye-DNA complexes were in agreement with the proposed half-intercalation model. Interestingly, in the dye-DNA complexes the pyrylium dyes probably resided in a place similar to the pyridine ones. It is possible that the benzothiazole (or benzooxazole) ring intercalated between the DNA bases and the pyrylium (or pyridine) residue was located in the DNA groove closer to the phosphate backbone.  相似文献   

9.
Amyloid deposition underlies a broad range of diseases including multiple neurodegenerative diseases, systemic amyloidosis and type‐2 diabetes. Amyloid sensitive dyes, particularly thioflavin‐T, are widely used to detect ex‐vivo amyloid deposits, to monitor amyloid formation in vitro and to follow the kinetics of amyloid self‐assembly. We show that the dye SYPRO‐orange binds to amyloid fibrils formed by human amylin, the polypeptide responsible for islet amyloid formation in type‐2 diabetes. No fluorescence enhancement is observed in the presence of pre‐fibrillar species or in the presence of non‐amyloidogenic rat amylin. The kinetics of human amylin amyloid formation can be monitored by SYPRO‐orange fluorescence and match the time course determined with thioflavin‐T assays. Thus, SYPRO‐orange offers an alternative to thioflavin‐T assays of amylin amyloid formation. The implications for the interpretation of SYPRO‐orange‐based assays of protein stability and protein‐ligand interactions are discussed.  相似文献   

10.
Two new crescent-shaped unsymmetrical cyanine dyes have been synthesised and their interactions with DNA have been investigated by different spectroscopic methods. These dyes are analogues to a minor groove binding unsymmetrical cyanine dye, BEBO, recently reported by us. In this dye, the structure of the known intercalating cyanine dye BO was extended with a benzothiazole substituent. To investigate how the identity of the extending heterocycle affects the binding to DNA, the new dyes BETO and BOXTO have a benzothiazole group and a benzoxazole moiety, respectively. Whereas BEBO showed a heterogeneous binding to calf thymus DNA, linear and circular dichroism studies of BOXTO indicate a high preference for minor groove binding. BETO also binds in the minor groove to mixed sequence DNA but has a contribution of non-ordered and non-emissive species present. A non-intercalative binding mode of the new dyes, as well as for BEBO, is further supported by electrophoresis unwinding assays. These dyes, having comparable spectral properties as the intercalating cyanine dyes, but bind in the minor groove instead, might be useful complements for staining of DNA. In particular, the benzoxazole substituted dye BOXTO has attractive fluorescence properties with a quantum yield of 0.52 when bound to mixed sequence DNA and a 300-fold increase in fluorescence intensity upon binding.  相似文献   

11.
Aggregation and fibrillation of bovine serum albumin   总被引:2,自引:0,他引:2  
The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology and characteristic amyloid X-ray fiber diffraction peaks. Fibrillation occurs over minutes to hours without a lag phase, is independent of seeding and shows only moderate concentration dependence, suggesting intramolecular aggregation nuclei. Nevertheless, multi-exponential increases in dye-binding signal and changes in morphology suggest the existence of different aggregate species. Although beta-sheet content increases from 0 to ca. 40% upon aggregation, the aggregates retain significant amounts of alpha-helix structure, and lack a protease-resistant core. Thus BSA is able to form well-ordered beta-sheet rich aggregates which nevertheless do not possess the same structural rigidity as classical fibrils. The aggregates do not permeabilize synthetic membranes and are not cytotoxic. The ease with which a multidomain all-alpha helix protein can form higher-order beta-sheet structure, while retaining significant amounts of alpha-helix, highlights the universality of the fibrillation mechanism. However, the presence of non-beta-sheet structure may influence the final fibrillar structure and could be a key component in aggregated BSA's lack of cytotoxicity.  相似文献   

12.
A wide range of human pathologies, including neurodegenerative diseases and other forms of amyloidosis, are associated with the formation of insoluble fibrillar protein aggregates known as amyloids. To gain insights into this process analytical methods are needed, which give quantitative data on the molecular events that are taking place. The dye Thioflavin T (ThT) is widely used for the spectroscopic determination of amyloid fibril formation. Different binding affinities to amyloids at neutral and acidic pH and the frequently observed poor binding at acidic pH are problematic in the use of the cationic ThT. The uncharged fluorescence probe [[5'-(4-hydroxyphenyl)[2,2'-bithiophen]-5-yl]methylene]-propanedinitrile (NIAD-4) has been recently designed by Swager and coworkers, in order to eliminate some of the limitations of ThT. Here we have used this novel dye for in vitro monitoring of the amyloid formation processes of de novo designed model peptides. Amyloid structures were successfully detected by NIAD-4 at neutral as well as acidic pH and no significant fluorescence was detectable in the presence of α-helical fibres. Thus, NIAD-4 proved to be a valuable alternative to ThT for spectroscopic studies on amyloid structures over a broad pH range.  相似文献   

13.
A novel approach to the design of sensitive fluorescent probes for nucleic acids detection is proposed. Suitable modifications of tri- and pentamethine cyanine dyes in the polymethine chain and/or in the heterocyclic residues can result in a significant decrease in unbound dye fluorescence intensity and an increase in dye emission intensity in the presence of DNA compared to the unsubstituted dye. The sharp enhancement in the fluorescence intensity upon dye interaction with double-stranded DNA permits the application of the modified tri- and pentamethine dyes as fluorescent probes in double-stranded DNA detection in homogeneous assays.  相似文献   

14.
Amyloid fibrils are filamentous aggregates of peptides and proteins implicated in a range of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It has been known almost since their discovery that these β-sheet-rich proteinacious assemblies bind a range of specific dyes that, combined with other biophysical techniques, are convenient probes of the process of amyloid fibril formation. Two prominent examples of such dyes are Congo red (CR) and Thioflavin T (ThT). It has been reported that in addition to having a diagnostic role, CR is an inhibitor of the formation of amyloid structures, and these two properties have both been explained in terms of the same specific noncovalent interactions between the fibrils and the dye molecules. In this article, we show by means of quartz-crystal microbalance measurements that the binding of both ThT and CR to amyloid fibrils formed by the peptide whose aggregation is associated with Alzheimer's disease, Aβ(1-42), can be directly observed, and that the presence of CR interferes with the binding of ThT. Light scattering and fluorescence measurements confirm that an interaction exists between these dyes that can interfere with their ability to reflect accurately the quantity of amyloid material present in a given sample. Furthermore, we show that CR does not inhibit the process of amyloid fibril elongation, and therefore demonstrate the ability of the quartz-crystal microbalance method not only to detect and study the binding of small molecules to amyloid fibrils, but also to elucidate the mode of action of potential inhibitors.  相似文献   

15.
We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations, including the disulfide reducing agent tris(2-carboxyethyl)phosphine (TCEP), pH, incubation time, linearity of labeling, and saturating dye/protein thiol ratio with protein standards to gauge specific and nonspecific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific versus nonspecific labeling in the presence of thiourea are also discussed. We found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, and α-lactalbumin) is achieved at 50- to 100-fold excess of the uncharged maleimide-functionalized BODIPY dyes over Cys. We confirmed our previous findings, and those of others, that the maleimide dyes are not affected by the presence of 2 M thiourea. Moreover, we established that 2 mM TCEP used as reductant is optimal. We also established that labeling is optimal at pH 7.5 and complete after 30 min. Low nonspecific labeling was gauged by the inclusion of non-Cys-containing proteins (horse myoglobin and bovine carbonic anhydrase) to the labeling mixture. We also showed that the dye exhibits little to no effect on the two-dimensional mobilities of labeled proteins derived from cells.  相似文献   

16.
This paper describes a low temperature, enzymatic route to induce fibrillar structures in a protein solution. The route comprises two steps. First, β-lactoglobulin was hydrolyzed into peptides at pH 8 and 37 °C with the enzyme AspN endoproteinase, which resulted in the formation of random aggregates. After hydrolysis, the pH was lowered to 2. As a result, long fibrillar aggregates were formed which was observed using transmission electron microscopy and Thioflavin T fluorescence measurements.  相似文献   

17.
We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.  相似文献   

18.
Abnormal fibrillization of amyloidogenic peptides/proteins has been linked to various neurodegenerative diseases such as Alzheimer's and Parkinson's disease as well as with type‐II diabetes mellitus. The kinetics of protein fibrillization is commonly studied by using a fluorescent dye Thioflavin T (ThT) that binds to protein fibrils and exerts increased fluorescence intensity in bound state. Recently, it has been demonstrated that several low‐molecular weight compounds like Basic Blue 41, Basic Blue 12, Azure C, and Tannic acid interfere with the fluorescence of ThT bound to Alzheimers' amyloid‐β fibrils and cause false positive results during the screening of fibrillization inhibitors. In the current study, we demonstrated that the same selected substances also decrease the fluorescence signal of ThT bound to insulin fibrils already at submicromolar or micromolar concentrations. Kinetic experiments show that unlike to true inhibitors, these compounds did neither decrease the fibrillization rate nor increase the lag‐period. Absence of soluble insulin in the end of the experiment confirmed that these compounds do not disaggregate the insulin fibrils and, thus, are not fibrillization inhibitors at concentrations studied. Our results show that interference with ThT test is a general phenomenon and more attention has to be paid to interpretation of kinetic results of protein fibrillization obtained by using fluorescent dyes. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.  相似文献   

20.
Heterodimeric dyes are described which bind tightly to double-stranded (dsDNA) with large fluorescence enhancements. These dyes are designed to exploit energy transfer between donor and acceptor chromophores to tune the separation between excitation and emission wavelengths. The dyes described here absorb strongly at the 488 nm argon ion line, but emit at different wavelengths, and can be applied to multiplex detection of various targets. The chromophores in these dyes, a thiazole orange-thiazole blue heterodimer (TOTAB), two different thiazole orange-ethidium heterodimers (TOED1 and TOED2), and a fluorescein-ethidium heterodimer (FED), are in each case linked through polymethyleneamine linkers. The emission maxima of the DNA-bound dyes lie at 662 (TOTAB), 614 (TOED 2), and 610 nm (FED). The dyes showed a > 100 fold enhancement of the acceptor chromophore fluorescence on binding to dsDNA and no sequence selectivity. In comparison with direct 488 nm excitation of the constituent monomeric dyes, in the heterodimers the fluorescence of the acceptor chromophores was greatly enhanced and the emission of the donor chromophores quenched by over 90%. The acceptor emission per DNA-bound dye molecule was constant from 100 DNA bp:dye to 20 bp:dye and decreased sharply at higher dye:DNA ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号