首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A protein similar to alpha-actinin has been isolated from unfertilized sea urchin eggs. This protein co-precipitated with actin from an egg extract as actin bundles. Its apparent molecular weight was estimated to be approximately 95,000 on an SDS gel: it co-migrated with skeletal-muscle alpha-actinin. This protein also co-eluted with skeletal muscle alpha-actinin from a gel filtration column giving a Stokes radius of 7.7 nm, and its amino acid composition was very similar to that of alpha-actinins. It reacted weakly but significantly with antibodies against chicken skeletal muscle alpha-actinin. We designated this protein as sea urchin egg alpha-actinin. The appearance of sea urchin egg alpha-actinin as revealed by electron microscopy using the low-angle rotary shadowing technique was also similar to that of skeletal muscle alpha-actinin. This protein was able to cross-link actin filaments side by side to form large bundles. The action of sea urchin egg alpha-actinin on the actin filaments was studied by viscometry at a low-shear rate. It gelled the F-actin solution at a molar ratio to actin of more than 1:20, at pH 6-7.5, and at Ca ion concentration less than 1 microM. The effect was abolished by the presence of tropomyosin. Distribution of this protein in the egg during fertilization and cleavage was investigated by means of microinjection of the rhodamine-labeled protein in the living eggs. This protein showed a uniform distribution in the cytoplasm in the unfertilized eggs. Upon fertilization, however, it was concentrated in the cell cortex, including the fertilization cone. At cleavage, it seemed to be concentrated in the cleavage furrow region.  相似文献   

2.
Experiments have been carried out to test the proposal that the pH increase at fertilization in sea urchin eggs promotes microvillar elongation. Results presented herein show that microvillar elongation and microfilament formation occurred when sea urchin eggs were incubated in sodium-free seawater containing the calcium ionophore A23187, a treatment which initiates activation, i.e., induces a transient increase in intracellular free calcium, but prevents subsequent cytoplasmic alkalinization. Within elongated microvilli and cortices of these eggs, microfilaments were arranged in a loose meshwork. However, if the pH of the egg cytoplasm was increased experimentally, microfilament bundles appeared within individual microvilli. These findings suggest that: (1) microvillar elongation and microfilament formation in the sea urchin egg at fertilization may occur when cytoplasmic alkalinization is inhibited, and (2) formation of the microvillus bundle of microfilaments at egg activation is pH sensitive. Additionally, if the cytoplasmic pH of unfertilized eggs was experimentally elevated by NH4Cl, microvilli failed to elongate. These data indicate that elevation of intracellular pH by this method is not sufficient to induce microvillar elongation.  相似文献   

3.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

4.
Unfertilized Paracentrotus lividus egg cytoskeleton is prepared by mild, nonionic detergent extraction at 4 degrees C in buffer systems containing either 2-methyl-2,4-pentanediol (hexylene glycol) or glycerol. These extractions allow the isolation of cytomatrices that maintain the egg form and are 70-80 micron in diameter. DNase inhibition assays show that actin is in polymerized form in these cytomatrices. Ultrastructural observations reveal that the cytoskeletons are made up essentially of 2 categories of filaments, 7-8-nm and 2-4-nm in diameter, respectively. After heavy meromyosin labelling, short, radiating actin filaments are seen in the cortical region, while longer actin filaments are found in the internal region of these cytomatrices. The 2-4-nm filaments of still unknown biochemical nature are organized in a meshwork. In contrast to results found with fertilized eggs, bundles of actin filaments and microtubules are absent; 8-13-nm filaments are not detected.  相似文献   

5.
Extensive arrays of microfilaments, microtubules and cytokeratin-type intermediate filaments were detected in the cortex of Strongylocentrotus droebachiensis oocytes using fluorescently labeled antibodies on both cortex and whole mount preparations. All three filament systems undergo dramatic structural reorganization during meiotic maturation of the egg. Microfilaments form a dense meshwork within the cortex of the oocyte. After meiosis, the filaments rearrange and shorten, resulting in a more loosely organized network. Both cortical microtubules and microtubules associated with a microtubule-organizing center are observed within the oocyte. After meiosis, the number and length of the cortical microtubules gradually diminish. A microtubule organizing center is found situated between the germinal vesicle and the plasma membrane in many oocytes. A network of filaments extends from the microtubule organizing center and radiates peripherally toward the germinal vesicle, presumably marking the animal pole. Cytokeratin-like intermediate filaments form a reticular network within the oocyte cortex, then solubilize during meiosis. In whole mounts of oocytes there is a single focal center of cytokeratin staining from which filaments radiate. Indirect immunofluorescence experiments, using anti-tubulin and anti-cytokeratin antibodies simultaneously, reveal the intermediate filament focal center to be localized within the microtubule organizing center. These results demonstrate the presence of a complex cortical cytoskeleton in premeiotic eggs of the sea urchin, Strongylocentrotus droebachiensis.  相似文献   

6.
The diffusion coefficient of tubulin has been measured in the cytoplasm of eggs and embryos of the sea urchin Lytechinus variegatus. We have used brain tubulin, conjugated to dichlorotriazinyl-aminofluorescein, to inject eggs and embryos. The resulting distributions of fluorescence were perturbed by bleaching with a microbeam of light from the 488-nm line of an argon ion laser. Fluorescence redistribution after photobleaching was monitored with a sensitive video camera and photography of the television-generated image. With standard photometric methods, we have calibrated this recording system and measured the rates of fluorescence redistribution for tubulin, conjugated to dichlorotriazinyl-aminofluorescein, not incorporated into the mitotic spindle. The diffusion coefficient (D) was calculated from these data using Fick's second law of diffusion and a digital method for analysis of the photometric curves. We have tested our method by determining D for bovine serum albumin (BSA) under conditions where the value is already known and by measuring D for fluorescein-labeled BSA in sea urchin eggs with a standard apparatus for monitoring fluorescence redistribution after photobleaching. The values agree to within experimental error. Dcytoplasmtubulin = 5.9 +/- 2.2 X 10(-8) cm2/s; DcytoplasmBSA = 8.6 +/- 2.0 X 10(-8) cm2/s. Because DH2OBSA = 68 X 10(-8) cm2/s, these data suggest that the viscosity of sea urchin cytoplasm for protein is about eight times that of water and that most of the tubulin of the sea urchin cytoplasm exists as a dimer or small oligomer, which is unbound to structures that would impede its diffusion. Values and limitations of our method are discussed, and we draw attention to both the variations in D for single proteins in different cells and the importance of D for the upper limit to the rates of polymerization reactions.  相似文献   

7.
We have previously described a novel actin-capping protein, a 20,000-molecular weight protein (20K protein)-actin complex (20K-A) isolated from sea urchin eggs. In the present study, the localization and possible function of this 20K protein were investigated. The 20K protein was localized in the sea urchin egg cortex. Its distribution in the cortex as revealed by immunofluorescence microscopy did not change during or after fertilization up to the first mitosis, but it was concentrated to some extent in the cleavage furrow region. Exogenously added actin polymerized on the cortex isolated from unfertilized egg; however, actin did not polymerize on the cortex extracted with 0.6 M KCl, that is, the cell membrane, which lost the 20K protein. The cell membrane preincubated with 20K-A restored the activity to grow actin filaments. When decorated with myosin subfragment 1, almost all the actin filaments showed the arrowhead configuration pointing away from the membrane, indicating that they were connected to the membrane at their barbed ends. These results strongly suggest that the 20K protein connects actin filaments to the plasma membrane of sea urchin eggs. Because of this property we call this protein "actolinkin".  相似文献   

8.
Using an antiserum produced against a purified calsequestrin-like (CSL) protein from a microsomal fraction of sea urchin eggs, we performed light and electron microscopic immunocytochemical localizations on sea urchin eggs and embryos in the first cell cycle. The sea urchin CSL protein has been found to bind Ca++ similarly to calsequestrin, the well-characterized Ca++ storage protein in the sarcoplasmic reticulum of muscle cells. In semi-thin frozen sections of unfertilized eggs, immunofluorescent staining revealed a tubuloreticular network throughout the cytoplasm. Staining of isolated egg cortices with the CSL protein antiserum showed the presence of a submembranous polygonal, tubular network similar to ER network patterns seen in other cells and in egg cortices treated with the membrane staining dye DiIC16[3]. In frozen sections of embryos during interphase of the first cell cycle, a cytoplasmic network similar to that of the unfertilized egg was present. During mitosis, we observed a dramatic concentration of the antibody staining within the asters of the mitotic apparatus where ER is known to aggregate. Electron microscopic localization on unfertilized eggs using peroxidase-labeled secondary antibody demonstrated the presence of the CSL protein within the luminal compartment of ER-like tubules. Finally, in frozen sections of centrifugally stratified eggs, the immunofluorescent staining concentrated in the clear zone: a layer highly enriched in ER and thought to be the site of calcium release upon fertilization. This localization of a CSL protein within the ER of the egg provides evidence for the ability of this organelle to serve a Ca++ storage role in the regulation of intracellular Ca++ in nonmuscle cells in general, and in the regulation of fertilization and cell division in sea urchin eggs in particular.  相似文献   

9.
10.
Choroid plexus and intestinal microvilli in thin sections have microfilaments in the cytoplasm adjacent to the membranes, and in replicas have broken strands of filaments in both cytoplasm and on E faces of plasm membranes. The microfilaments contain actin as indicated by their binding of heavy meromyosin (HMM). In sections of choroid plexus, the microfilaments are 7-8 nm in diameter and form a loose meshwork which lies parallel to the membrane and which is connected to the membranes both by short, connecting filaments (8 times 30 nm) and dense globules (approximately 15-20 nm). The filamentous strands seen in replicas are approximately 8 nm in diameter. Because they are similar in diameter and are connected to the membrane, these filamentous strands seen in replicas apparently represent the connecting structures, portions of the microfilaments, or both. The filamentous strands attached to the membrane are usually associated with the E face and appear to be pulled through the P half-membrane. In replicas of intestinal brush border microvilli, the connecting strands attaching core microfilaments to the membrane are readily visualized. In contrast, regions of attachment of core microfilaments to dense material at the tips of microvilli are associated with few particles on P faces and with few filamentous strands on the E faces of the membranes. Freeze-fracture replicas suggest a morphologically similar type of connecting strand attachment for microfilament-membrane binding in both choroid plexus and intestinal microvilli, despite the lack of a prominent core bundle of microfilaments in choroid plexus microvilli.  相似文献   

11.
Monoclonal antibodies directed against subunits of a sea urchin flagellar dynein were used to test for the presence of cytoplasmic antigens in preparations of fertilized eggs and mitotic apparati . A 9-10 S complex composed of 330,000-, 134,000-, and 126,000-mol-wt subunits was isolated from outer arms of Strongylocentrotus purpuratus sperm flagella and used to characterize the antibodies. Seven monospecific antibodies to the 330,000 subunit and two against the 134,000 subunit of the 9-10 S complex were identified by binding to nitrocellulose blots of electrophoretograms resolving polypeptides from different dynein preparations. The antibodies were applied also to blots of polypeptides from fertilized sea urchin egg at the first metaphase and a cellular fraction of mitotic apparati . Three of the antibodies to the 330,000 subunit bound to a cytoplasmic polypeptide of approximately the same molecular weight and the two antibodies to the smaller subunits recognized a polypeptide of 124,000 apparent molecular weight. Both antigens appeared to be enriched in the fraction containing mitotic apparati . These results indicate that polypeptides similar to two subunits of the 9-10 S complex are present in eggs at metaphase, and they are apparently associated with the mitotic apparatus.  相似文献   

12.
Filaments 5 nm thick, located throughout the cytoplasm mainly along the surface, are observed in intact lymphocytes. In the control glycerinized lymphocytes, besides the above filaments aggregations of filaments nearly 3 nm in diameter were found. After the treatment of cells by antimurine serum or ferritin-conjugated concanavalin A, some fibrillar structures are observed mainly in the cap region in the form of filaments 5-6 nm of thickness, radially directed towards the plasma membrane. After glycerinization, three types of filaments are observed being, respectively, near 3, 5-6 and almost 8 nm in diameter. Two latter types of filaments are decorated by S1-myosine fragments which indicates their actine nature. Differences in the character and distribution of myofibrils in the cytoplasm of intact cells and cells with caps may witness in favour of their involvement in the processes associated with redistribution of surface receptors.  相似文献   

13.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

14.
Summary The three-dimensional structure of synaptic ribbons in photoreceptor cells of the frog retina was studied with freeze-etching and freeze-substitution methods, combined with a rapid-freezing technique. Although the synaptic ribbon consisted of two electron-dense plaques bisected by an electron-lucent layer in conventional thin sections, such lamellar nature was not so evident in freeze-etched replicas. The cytoplasmic surfaces of the synaptic ribbon presented an extremely regular arrangements of small particles 4–6 nm in diameter. Fine filaments 8–10 nm in diameter and 30–50 nm in length connected synaptic vesicles and the ribbon surface. These connections were mediated by large particles on both ends of the filaments. Approximately 3–5 filaments attached to one synaptic vesicle. Synaptic ribbons were anchored to a characteristic meshwork underlying the presynaptic membrane via another group of similar fine filaments. The meshwork seemed to be an etched replicated image of the presynaptic archiform density observed in thin sections.  相似文献   

15.
Cell division in fertilized sea urchin eggs was reversibly inhibited when the ketoaldehyde phenyl glyoxal (PG) at a concentration of 0.1 mM was added to eggs for ten minutes prior to the formation of the mitotic spindle. We investigated whether inhibition of mitosis was due to PG binding to the cell surface (as previously suggested by Stein and Berestecky, '74) or to some intracellular effect. When 14C-PG was added to eggs, label was readily taken up into the egg cytoplasm; very little label was associated with the egg surface. In the cytoplasm PG combined with equimolar amounts of reduced glutathione (GSH), decreasing the levels of cellular GSH to less than 15% of normal and accounting for at least 50% of the PG taken up by eggs. The concentrations of oxidized and protein-bound glutathione were unaffected by PG treatment. We showed that glyoxalase enzymes were present in sea urchin eggs and were capable of metabolizing the PG-GSH complex, thereby restoring GSH to normal levels after PG was removed from the sea water. Though some other effect of PG cannot be ruled out, the major fate of PG in eggs was to combine with GSH, and the transient decrease in GSH which resulted could lead to inhibition of mitosis. While other reports (Nath and Rebhun, '76; Oliver et al., '76) have shown that reagents which oxidize GSH disrupt microtubule-related events, our results showed that such inhibition could be caused by decreased GSH levels alone.  相似文献   

16.
The isolated membrane skeleton of human erythrocytes was studied by high resolution negative staining electron microscopy. When the skeletal meshwork is spread onto a thin carbon film, clear images of a primarily hexagonal lattice of junctional F-actin complexes crosslinked by spectrin filaments are obtained. The regularly ordered network extends over the entire membrane skeleton. Some of the junctional complexes are arranged in the form of pentagons and septagons, approximately 3 and 8%, respectively. At least five forms of spectrin crosslinks are detected in the spread skeleton including a single spectrin tetramer linking two junctional complexes, three-armed Y-shaped spectrin molecules linking three junctional complexes, three-armed spectrin molecules connecting two junctional complexes with two arms bound to one complex and the third arm bound to the adjacent complex, double spectrin filaments linking two junctional complexes, and four-armed spectrin molecules linking two junctional complexes. Of these, the crosslinks of single spectrin tetramers and three-armed molecules are the most abundant and represent 84 and 11% of the total crosslinks, respectively. These observations are compatible with the presence of spectrin tetramers and oligomers in the erythrocyte membrane skeleton. Globular structures (9-12 nm in diameter) are attached to the majority of the spectrin tetramers or higher order oligomer-like molecules, approximately 80 nm from the distal ends of the spectrin tetramers. These globular structures are ankyrinor ankyrin/band 3-containing complexes, since they are absent when ankyrin and residual band 3 are extracted from the skeleton under hypertonic conditions.  相似文献   

17.
Summary Cerebella of 3- to 6-week-old chickens were cryofixed in a nitrogen-cooled propane jet, deep-etched and rotary-shadowed. The use of a brief perfusion of 0.32 M sucrose improved the quality of the cryofixation and allowed the study of the deeper layers of the cerebellar cortex. It is reported that the cytoskeleton of the Purkinje cells (PC) shows distinct domains and composition of filamentous structures in the different regions of the cell cytoplasm, such as the perikaryon, the cytoplasm of dendrites and the axoplasm. The perikaryon is occupied by a meshwork of fine filaments, 4–7 nm in diameter, that extends from the nuclear outer membrane to the cell membrane. In this zone the cell organelles (e.g., endoplasmic reticulum, mitochondria) adopt a circular arrangement around the nucleus. All structures are anchored by microfilaments to the cytoplasmic network. The dendrites show a dense cytoplasmic network including bundles of microtubules, neurofilaments and microfilaments. Numerous aggregated globular components are attached to this cytoskeleton. The cytoskeleton of the dendritic spines shows axially oriented 10-nm bundles of filaments, which are interconnected and anchored also to the cell membrane and the components of the agranular endoplasmic reticulum by cross-linkers. As described in peripheral nerves, the axoplasm of axons in the central nervous system exhibits predominantly neurofilaments and microtubules aligned along the axis of the neuntes in a three-dimensional arrangement and interconnected by cross-linker filaments and filamentous structures.  相似文献   

18.
Cytoskeletal organization at the postsynaptic complex   总被引:8,自引:2,他引:6       下载免费PDF全文
Postsynaptic densities and the adjacent cytoskeleton were examined in deep-etched, unfixed slices of guinea pig anteroventral cochlear nucleus. The postsynaptic density seen in conventional thin sections corresponds to a meshwork of 4-nm filaments associated with intramembrane particles at the postsynaptic active zone of inhibitory as well as excitatory synapses. These filaments intermesh with a lattice of 8- to 9-nm microfilaments, tentatively identified as F- actin, that is concentrated under the postsynaptic density. We postulate that the meshwork of 4-nm filaments anchors receptors to the adjacent microfilament lattice; this extended postsynaptic complex may limit the mobility of receptors and help maintain the curvature of the postsynaptic membrane.  相似文献   

19.
Ovarian granulosa cells grown on glass coverslips were split by a "sandwich" technique. Using this technique we describe a complex filamentous network in the cytoplasm of cultured granulosa cells that was composed of a branching and anastomosing lattice of filaments 20-40 nm in diameter. Since filament identification is impossible on the basis of size, split cells were decorated with S-1 fragments of rabbit skeletal muscle myosin. It was readily apparent that the major constituent of the filamentous lattice was actin. Actin was organized in large bundles in which individual filaments were longitudinally aligned. Actin was also observed organized in a loose network throughout the remainder of the cytoplasm. Actin appeared to be intimately associated with organelle and plasma membranes. Coated pits were also a site of actin-filament interaction. Filament polarity was generally away from the membrane with which filaments were associated.  相似文献   

20.
An antibody against M5 ganglioside (NeuGc alpha 2-6Glc beta 1-1Cer), the dominant ganglioside in the eggs of the sea urchin, Anthocidaris crassispina, was purified by affinity chromatography from rabbit antiserum against crude ganglioside of the eggs. The specificity of the antibody was verified by enzyme-linked immunosorbent assay and TLC immunostaining. M5 ganglioside was also the major one in the eggs of another sea urchin, Hemicentrotus pulcherrimus, as judged from TLC analyses including immunostaining. Cryostat-sections of H. pulcherrimus eggs were examined to determine the distribution of M5 ganglioside by indirect immunofluorescence microscopy with the antibody. Before fertilization, the egg cortex was highly stained, while the other part of cytoplasm was uniformly but much more weakly stained. After fertilization, the staining rapidly decreased in the cortex and was restricted to a very thin peripheral layer and to cytoplasmic patches. The immunoreactivity was also observed in the esophagus and the somatic cells of the testis, but the spermatozoa were never stained with the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号