首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
2.
3.
Apoenzyme, containing ⩽0.1 zinc atoms and ⩽0.2 Fe atoms per subunit and with ⩽3% of the phosphatase activity, has been prepared from native red kidney bean purple phosphatase. Treatment of this apoenzyme with Fe3+ or Zn2+ separately gave very little recovery of activity, whereas treatment with both Fe3+ and Zn2+ resulted in complete restoration of activity, indicating that both metal ions are essential. ZnFe enzyme with close to one iron and one zinc atom per subunit has been reconstituted by this procedure. Essentially full reactivation was also achieved by addition of Fe3+ together with Fe2+ or Co2+ to the apoenzyme; Fe3+ and Cd2+ gave 27% restoration of activity, whereas Fe3+ with Mn2+, Cu2+, Ni2+ or Hg2+ gave little or no increase in activity. Kinetic parameters for the hydrolysis of p-nitrophenyl phosphate and ATP by the FeFe derivative are reported.  相似文献   

4.
In an attempt to elucidate the effect of metallic ions and EDTA on acidic α-d-glucosidase activity, we measured acidic α-d-glucosidase activity from either lymphocyte and muscle tissue homogenates or intact cells after incubation with metallic ions. The results showed that this enzyme activity was strongly inhibited by Ag+, Hg2+, and Fe3+ in either lymphocyte or muscle tissue homogenates. There was no effect of Zn2+, Cu2+, and Cd2+. However, intact cells, either lymphocyte or muscle cells, after incubation with Zn2+ for 1 or 2 hr, showed enhanced enzyme activity and suppression in the other metallic ion groups, especially in Ag+, Hg2+, and Fe3+. Since deficiency of this enzyme can cause type II glycogen storage disese (Pompe’s disease), the more we understand the character of this enzyme, the more we can improve our enzymatic therapy. This work was supported by Grant NSC75-0412-B075-41 from the National Science Council of the Republic of China.  相似文献   

5.
Ferric and ferrous ion plays critical roles in bioprocesses,their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix.In this study,an M13 bacteriophage(phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein.The interaction between the specific phenol group of tyrosine and Fe~(3+)./ Fe~(2+).was used as the sensor.Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe~(3+) and Fe~(2+).The aggregated phages infected the host bacterium inefficiently.This phenomenon could be utilized for detection of ferric and ferrous ions.For ferric ions,a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired.For ferrous ions,a calibration curve ranging from 800 nmol/L to 8μmol/L with a detection limit of 641.7 nmol/L was acquired.The assay was specific for Fe~((3+)) and Fe~((2+)) when tested against Ni~(2+),Pb~(2+),Zn~(2+),Mn~(2+),Co~(2+),Ca~(2+),Cu~(2+),Cr~(3+),Ba~(2+),and K~+.The tyrosine displaying phage to Fe~(3+) and Fe~(2+) interaction would have plenty of room in application to biomatenals and bionanotechnology.  相似文献   

6.
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20–80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.  相似文献   

7.
Microbiological leaching of synthetic cobaltous sulfide (CoS) was investigated with a pure strain of Thiobacillus ferroxidans. The strain could not grow on CoS-salts medium in the absence of ferrous ions (Fe2+). However, in CoS-salts medium supplemented with 18 mM Fe2+, the strain utilized both Fe2+ and the sulfur moiety in CoS for growth, resulting in an enhanced solubilization of Co2+. Cell growth on sulfur-salts medium was strongly inhibited by Co2+, and this inhibition was completely protected by Fe2+. Cobalt-resistant cells, obtained by subculturing the strain in medium supplemented with both Fe2+ and Co2+, brought a marked decrease in the amount of Fe2+ absolutely required for cell growth on CoS-salts medium. As one mechanism of protection by Fe2+, it is proposed that the strain utilizes one part of Fe2+ externally added to CoS-salts medium to synthesize the cobalt-resistant system. Since a similar protective effect by Fe2+ was also observed for cell inhibition by stannous, nickel, zinc, silver, and mercuric ions, a new role of Fe2+ in bacterial leaching in T. ferrooxidans is proposed.  相似文献   

8.
9.
The designing and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of alanine substituted rhodamine B derivative 3 having specific binding affinity toward Fe3+ with micro molar concentration level. Through fluorescence titration at 599 nm, we were confirmed that ligand 3 exhibited ratiometric fluorescence response with remarkable enhancement in emission intensity by complexation between 3 and Fe3+ while it appeared no emission in case of the competitive ions (Sc3+, Yb3+, In3+, Ce3+, Sm3+, Cr3+, Sn2+, Pb2+, Ni2+, Co2+, Cu2+, Ba2+, Ca2+, Mg2+, Ag+, Cs+, Cu+, K+) in aqueous/methanol (60:40, v/v) at neutral pH. However, the fluorescence as well as colorimetric response of ligand–iron complex solution was quenched by addition of KCN which snatches the Fe3+ from complex and turn off the sensor confirming the recognition process was reversible. Furthermore, bioimaging studies against L-929 cells (mouse fibroblast cells) and BHK-21 (hamster kidney fibroblast), through confocal fluorescence microscopic experiment indicated that ligand showed good permeability and minimum toxicity against the tested cell lines.  相似文献   

10.
The toxic effect of the Fe2+ and Fe3+ ions on the luminescent recombinant Escherichia coli strain with the luxCDABE operon was studied in short- and long-term experiments. At 30-min exposure of bacteria to the iron ions, the effective concentrations of Fe2+ and Fe3+ resulting in acute toxicity (EC50) were 8.5 and 1.3 mg/L, respectively. In the long-term (24 h) experiment, during active bacterial growth, the toxicity index for Fe2+ and Fe3+ was 65.5 and 62.8, respectively. Addition of the iron ions into the medium did not suppress growth, although it inhibited luminescence. Comparative analysis of the short- and long-term experiments made it possible to assess iron toxicity at the concentrations from 0.5 to 20 mg/L (as calculated for the Fe2+ and Fe3+ ions). Iron ions were found to affect only the reactions that were not vitally important for the cell. At the same time, they had no negative effect on the genetic mechanisms and protein synthesis, thus indicating non-specific toxicity of Fe2+ and Fe3+.  相似文献   

11.
This work evaluates linoleic acid peroxidation reactions initiated by Fe3+-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe3+ ions from freshly prepared solutions. The compounds responsible for the Fe3+-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe3+ ions and the Fe3+-reducing compounds showed that the rate of O2 consumption during peroxidation was proportional to the Fe3+-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe3+-reducing compounds formed during wood biodegradation by C. subvermispora can mediate lignin degradation through linoleic acid peroxidation.  相似文献   

12.
A novel dioscin-α-l-rhamnosidase was isolated and purified from fresh bovine liver. The activity of the enzyme was tested using diosgenyl-2,4-di-O-α-l-rhamnopyranosyl-β-d-glucopyranoside as a substrate. It was cleaved by the enzyme to two compounds, rhamnoses and diosgenyl-O-β-d-glucopyranoside. The optimal conditions for enzyme activity were that temperature was at 42 °C, pH was at 7, reaction time was at 4 h, and the substrate concentration was at 2%. Furthermore, metal ions such as Fe3+, Cu2+, Zn2+, Ca2+ and Mg2+ showed different effects on the enzyme activity. Mg2+ acted as an activator whereas Cu2+, Fe3+, and Zn2+ acted as strong inhibitors in a wide range of concentrations from 0 to 200 mM. It was interesting that Ca2+ played a role as an inhibitor when its concentration was at 10 mM and acted as an activator at the other concentrations for the enzyme. Moreover, the molecular weight of enzyme was determined as 75 kDa.  相似文献   

13.
In recent time, vanadium compounds are being used as antidiabetic drug and in orthopedic implants. However, the exact role of this incorporated vanadium in improving the quality of bone structure and morphology is not known. The impact of vanadium ion was studied and compared to other trace metal ions with respect to the proliferation and osteoblast differentiation of C3H10t1/2 cells. Toxicity profile of these trace metal ions revealed a descending toxicity trend of Fe2+ > Zn2+ > Cu2+ > Co2+ > Mn2+ > V5+ > Cr2+. The effect of vanadium and other trace metal ions on osteoblast differentiation was evaluated by culturing the cells for 10 days in osteoblastic medium supplemented with different trace ions at concentrations lower than their cytotoxic doses. The results indicated that vanadium has maximum impact on the induction of osteoblast differentiation by upregulating alkaline phosphatase activity and mineralization by up to 145 and 150 %, respectively (p?<?0.05), over control. Cu2+ and Zn2+ had a mild inhibitory effect, while Mn2+, Fe2+, and Co2+ demonstrated a clear decrease in osteoblast differentiation when compared to the control. The data as presented here demonstrate that orthopedic implants, if supplemented with trace metals like vanadium, may provide a source of better model for bone formation and its turnover.  相似文献   

14.
Dehydrodicaffeic acid dilactone (DDACD) was found in a cultured mushroom by screening for catechol-O-methyltransferase inhibitors. The enzyme which converts two molecules of caffeic acid to DDCAD has been extracted from the mushroom and purified and the enzyme reaction has been studied. It was markedly inhibited by reducing agents, such as NADPH, NADH, glutathione and ascorbic acid but stimulated by Fe3+, Fe2+, Co2+, Ni2+, Cu2+, Cu+ and Zn2+ ions. Sodium diethyldithiocarbamate and sodium cyanide known to be copper chelating agents inactivated the enzyme, but activity was restored by addition of Cu2+ or Cu+. Although the enzymic reaction did not occur under anaerobic conditions, 18O-oxygen was not incorporated into DDCAD. o-Diphenol oxidase catalyzed DDCAD formation from caffeic acid and the DDCAD-forming enzyme catalyzed the formation of DOPAchrome from DOPA. Thus, the DDCAD-forming enzyme is a type of o-diphenol oxidase. Peroxidase and hydrogen peroxide produced DDCAD from caffeic acid.

On the other hand, DDCAD was non-enzymatically synthesized from caffeic acid in the presence of CuCl2 in 64% yield. In both enzymic and non-enzymic syntheses, both (+)- DDCAD and (?)-DDCAD were produced.  相似文献   

15.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

16.
Flavin reductase plays an important biological role in catalyzing the reduction of flavin by NAD(P)H oxidation. The gene that codes for flavin reductase from Citrobacter freundii A1 was cloned and expressed in Escherichia coli BL21(DE3)pLysS. In this study, we aimed to characterize the purified recombinant flavin reductase of C. freundii A1. The recombinant enzyme was purified to homogeneity and the biochemical profiles, including the effect of pH, temperature, metal ions and anions on flavin reductase activity and stability, were determined. This enzyme exhibited optimum activity at 45 °C in a 10-min reaction at pH 7.5 and was stable at temperatures up to 30 °C. At 0.1 mM concentration of metal ions, flavin reductase activity was stimulated by divalent cations including Mn2+, Sr2+, Ni2+, Sn2+, Ba2+, Co2+, Mg2+, Ca2+ and Pb2+. Ag+ was noticeably the strongest inhibitor of recombinant flavin reductase of C. freundii A1. This enzyme should not be defined as a standard flavoprotein. This is the first attempt to characterize flavin reductase of C. freundii origin.  相似文献   

17.
The aim of this study was to prepare and select chitosan nanoparticles loaded metal ions with high antibacterial activities. Chitosan nanoparticles were prepared based on ionic gelation between chitosan and sodium tripolyphosphate. Then, Ag+, Cu2+, Zn2+, Mn2+, or Fe2+ was individually loaded onto chitosan nanoparticles. Their particle sizes and zeta potentials were measured. Their antibacterial activities were evaluated by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli 25922, Salmonella choleraesuis ATCC 50020 and Staphylococcus aureus 25923 in vitro. Results showed that antibacterial activity was significantly enhanced by the metal ions loaded, except for Fe2+. Especially for chitosan nanoparticles loaded Cu2+, the MIC and MBC against E. coli 25922, S.choleraesuis ATCC 50020 and S. aureus 25923 were 21–42 times lower than that of Cu2+, respectively. Moreover, it was found that antibacterial activity was directly proportional to zeta potential.  相似文献   

18.
A cDNA gene encoding a mature peptide of the mono- and diacylglycerol lipase (abbreviated to PcMdl) from Penicillium cyclopium PG37 was cloned and expressed in Pichia pastoris GS115. The recombinant PcMdl (rePcMdl) with an apparent molecular weight of 39 kDa showed the highest activity (40.5 U/mL of culture supernatant) on 1,2-dibutyrin substrate at temperature 35°C and pH 7.5. The rePcMdl was stable at a pH range of 6.5–9.5 and temperatures below 35°C. The activity of rePcMdl was inhibited by Hg2+ and Fe3+, but not significantly affected by EDTA or the other metal ions such as Na+, K+, Li+, Mg2+, Zn2+, Ca2+, Mn2+, Cu2+, and Fe2+. PcMdl was identified to be strictly specific to mono- and diacylglycerol, but not triacylglycerol. Stereographic view of PcMdl docked with substrate (tri- or diacylglycerol) analogue indicated that the residue Phe256 plays an important role in conferring the substrate selectivity. Phe256 projects its side chain towards the substrate binding groove and makes the sn-1 moiety difficult to insert in. Furthermore, sn-1 moiety prevents the phosphorus atom (substitution of carboxyl carbon) from getting to the Oγ of Ser145, which results in the failure of triacylglycerol hydrolysis. These results should provide a basis for molecular engineering of PcMdl and expand its applications in industries.  相似文献   

19.
L-arabinose isomerase (EC 5.3.1.4) mediates the isomerization of D-galactose into D-tagatose as well as the conversion of L-arabinose into L-ribulose. To investigate the properties of L-arabinose isomerase as a biocatalyst for the conversion of galactose to tagatose, the L-arabinose isomerase of Escherichia coli was characterized. The substrate specificity for L-arabinose was 166-fold higher than that for D-galactose. The optimal pH and temperature for the galactose isomerization reaction were 8.0 and 30 °C, respectively. The enzyme activity was stable for 1 h at temperatures below 35 °C and within a pH range of 8–10. The Michaelis constant, K m, for galactose was 1480 mM, which is 25-fold higher than that for arabinose. The addition of Fe2+ and Mn2+ ions enhanced the conversion of galactose to tagatose, whereas the addition of Cu2+, Zn2+, Hg2+, and Fe3+ ions inhibited the reaction completely. In the presence of 1 mM Fe2+ ions, the K m for galactose was found to be 300 mM.  相似文献   

20.
Five metallic cations (Fe3+, Cr3+, Ca2+, Mg2+, Mn2+; concentration range, 1.85 × 10-4 to 37 × 10-4m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe3+ and Cr3+ were generally beneficial but were toxic at 37 × 10-4m. Of the divalent ions tested, Ca2+ and Mg2+ usually gave higher counts in nutrient broth, except at a concentration of 9.25 × 10-4m, whereas the effect of Mn2+ was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe3+ or Cr3+, or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号