首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cohesive ends of the DNA of bacteriophage λ particles are normally formed by the action of a nuclease on the cohesive end sites (cos) of concatemeric λ DNA (reviewed by Hohn et al., 1977). The nuclease also cuts the cos site of an integrated prophage, and DNA located to the right is preferentially packaged into phage particles. This process occurs with approximately the same efficiency and rate in a single lysogen as in a tandem polylysogen. Thus, the rate of cos cutting does not increase when the number of cos sites per molecule increases, an hypothesis that has been proposed to explain why cohesive ends are not formed in circular monomers of λ DNA. We propose instead that the interaction of Ter with cos is influenced by the configuration of the DNA outside of cos during packaging, and that this configuration is different for circular monomers than for other forms of λ DNA. A model that gives rise to such a difference is described.We also found that missense mutations in the λ A gene changed the efficiency of packaging of phage relative to host DNA. This was not the case for missense mutations in several phage genes required for capsid formation. Thus, the product of gene A plays a role in determining packaging specificity, as expected if it is or is part of the nuclease that cuts λ DNA at cos.  相似文献   

3.
B H Lindqvist 《Gene》1981,14(4):243-250
A helper-independent P4::P2 hybrid (Hy19), with the essential gene region of P4 linked to the late genes of P2, has been isolated by in vitro recombination techniques. This hybrid expresses a P4 Sid? phenotype since it makes large heads. The int-C region of P2 is deleted from Hy19 and its DNA replication is independent of the host rep gene, indicating that it depends on the P4 replicon.  相似文献   

4.
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ~200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.  相似文献   

5.
State-of-the-art monoclonal antibody (mAb) discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichia pastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional “half” IgGs to the cell wall of Pichia pastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichia pastoris , this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.  相似文献   

6.
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.  相似文献   

7.
8.
The large capacity of pseudorabies virus (PRV) for foreign DNA and broad host range make it a prospective tool for the preparation of vaccines and agents of gene and tumour therapy. Here we introduced a cloning strategy that facilitates construction of recombinant PRV?CBAC vectors based on mating-assisted genetically integrated clone (MAGIC). The target gene was cloned into a small conditionally replicating donor plasmid, followed by shuffling to a recipient PRV?CBAC plasmid in vivo of Escherichia coli through MAGIC. The average efficiency of successful clones was 89%. Moreover, permanent integration of unwanted sequences was avoided.  相似文献   

9.
Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96 h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262 g/L, 38,500 U/mL and 2.82 g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field.  相似文献   

10.
We describe here simple techniques for increasing the frequency of UV-induced mutations in a DNA fragment cloned in plasmid pBR322. Irradiation of both the host and the plasmid DNA before transformation is necessary to produce new mutations in the plasmid DNA, presumably because the UV-damaged pBR322 replicon cannot efficiently induce the error-prone repair pathway of Escherichia coli. In contrast, U V irradiation of the plasmid DNA alone before transformation primarily causes the transfer of preexisting mutations from the host chromosome to homologous DNA present in the plasmid. The only other kind of mutants obtained were large deletions of the plasmid DNA. Two chromosomal mutations from the host galK gene and one from the lacZ gene have been transferred to the plasmid by UV irradiation of the plasmid DNA alone. The technique can thus be of general use.  相似文献   

11.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

12.
The temperate bacteriophage Mu causes mutations by inserting its DNA randomly into the genes of its host bacterium Escherichia coli. It is shown here that Mu DNA can be precisely excised from the different integration sites and that as a result wild-type function of the gene into which Mu was inserted is restored. The excision of Mu DNA is observable only if the Mu prophage carries mutations at the X locus. Thus, lac+ revertants from six strains, containing heat-inducible prophage Mu cts62 at different locations in the Z gene of the lac operon, were readily obtained by first introducing the X mutation into Mu cts62. The lac+ revertants produced wild-type β-galactosidase, and no trace of Mu DNA could be detected in them; this indicates that the junction of Mu DNA and host DNA can be specifically recognized. However, the excision of Mu DNA is generally not perfect, because in most cases it does not lead to the wild-type genotype. The function of gene A of Mu appears to be required for excision. Since the lethal functions of Mu are completely blocked in the Mu cts62 X prophage, the X locus probably has a regulatory function. At least one X mutation is caused by an insertion of about 900 base-pairs in Mu DNA. The discovery of the X mutants opens the way for studying the reversible interaction of the host and Mu chromosomes, and for using Mu to manipulate the host genome in various ways.  相似文献   

13.
Topoisomerases are enzymes that alter the topological properties of DNA. Phage T4 encodes its own topoisomerase but it can also utilize host-encoded topoisomerases. Here we characterized 55.2, a phage T4 predicted ORF of unknown function. High levels of expression of the cloned 55.2 gene are toxic in E. coli. This toxicity is suppressed either by increased topoisomerase I expression or by partial inactivation of the ATPase subunit of the DNA gyrase. Interestingly, very low-level expression of 55.2, which is non-lethal to wild type E. coli, prevents the growth of a deletion mutant of the topoisomerase I (topA) gene. In vitro, gp55.2 binds DNA and blocks specifically the relaxation of negatively supercoiled DNA by topoisomerase I. In vivo, expression of gp55.2 at low non-toxic levels alters the steady state DNA supercoiling of a reporter plasmid. Although 55.2 is not an essential gene, competition experiments indicate that it is required for optimal phage growth. We propose that the role of gp55.2 is to subtly modulate host topoisomerase I activity during infection to insure optimal T4 phage yield.  相似文献   

14.
Candida antarctica lipase B (CALB) is one of the most widely used and studied enzymes in the world. In order to achieve the high-level expression of CALB in Pichia, we optimized the codons of CALB gene and α-factor by using a de novo design and synthesis strategy. Through comparative analysis of a series of recombinants with different expression components, we found that the methanol-inducible expression recombinant carrying the codon-optimized α-factor and mature CALB gene (pPIC9KαM-CalBM) has the highest lipase production capacity. After fermentation parameters optimization, the lipase activity and protein content of the recombinant pPIC9KαM-CalBM reached 6,100 U/mL and 3.0 g/L, respectively, in a 5-L fermentor. We believe this strategy could be of special interest due to its capacity to improve the expression level of target gene, and the Pichia transformants carrying the codon-optimized gene had great potential for the industrial-scale production of CALB lipase.  相似文献   

15.
Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts’ metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.  相似文献   

16.
A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR), requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb) was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 104 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb) and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb), the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.  相似文献   

17.
Initiation of synthesis of the structural proteins of Semliki Forest virus.   总被引:6,自引:0,他引:6  
Insertion of phage λ DNA into the normal attachment site of the DNA of the host Escherichia coli has been studied by ultracentrifugation analysis of the conversion of covalent circles of F′450 (F′gal attλ bio) to F′450(λ) circles. We have found that integration proceeds at the normal rate if, in addition to the int gene product and a proper combination of phage and bacterial attachment sites, a large pool of λ DNA and some activity of the excision gene xis are present. In addition, turnoff of both phage DNA synthesis and xis gene activity are required.  相似文献   

18.
Most of the approaches used to correct gene mutations in mammalian cells involve the targeting of short nucleotide molecules to homologous chromosomal sequences and the replacement of resident sequences via homologous recombination and mismatch repair. The limited efficiency and inconsistent reproducibility of these techniques are major constraints to their use in gene therapy. One of the main problems is that it is impossible to obtain reproducible results when the targeted gene loci differ. We investigated the effects of flanking sequences on homologous recombination by means of an in vitro assay of the efficiency of oligonucleotide targeting to its homologous sequence on a large duplex molecule in a reaction catalysed by the Escherichia coli RecA protein. We demonstrated that polypurine·polypyrimidine tracts (PPTs) in duplex DNA strongly stimulate the formation of D-loops with short oligodeoxynucleotides. This result was reproduced with various PPT sequences and oligonucleotides. The stimulatory effect was observed at loci as far as 4000 bp from the PPT. The formation of complexes between the oligonucleotide and the duplex molecule depended on the extent of sequence similarity between the two DNAs and the presence of the RecA protein. The stimulatory effect was inhibited by excess RecA and restored by adding heterologous DNA. We suggest that PPT sequences induce conformational changes in duplex DNA, leading to the aggregation of molecules, facilitating homology searches. We com pared, in vivo, the efficiency of the oligonucleotide-mediated correction of a URA3 chromosomal mutation for sequences with and without a PPT sequence in the vicinity. Consistent with our in vitro results, the efficiency of correction was eight times higher in the presence of the PPT sequence.  相似文献   

19.
The presence of intracellular osidases, nitrite and nitrate reductases, vitamin requirements and GC content in the DNA, have been investigated for in 18 species of Pichia.According to their typical characters and their biocaracters, a pattern is suggested for the integration of these new species into the formerly existing groups of the genus Pichia. A new way of classifying the species of the genus Pichia is proposed.  相似文献   

20.
In spite of the long history of recombinant DNA technology, some genes have not been successfully cloned in Escherichia coli. This is probably due to the toxic effects of the expressed foreign gene product on E. coli. In initial attempts to clone the full-length Vssc1 voltage-sensitive sodium channel α-subunit gene from houseflies, we used one of the most popular vectors and hosts but were unable to retrieve any intact clone. By using two vectors with different copy numbers and two alternate E. coli host strains, we found that the combined use of a low copy number vector (pALTER-1) and an E. coli host strain that suppresses plasmid replication (ABLE-K) is essential to obtain intact full-length Vssc1 clone. However, since the ABLE-K strain was not a suitable host for the long-term maintenance of Vssc1 gene due to its recombination-positive genotype, it was necessary to transfer the Vssc1 plasmid from the primary host to a secondary host with a recombination-minus genotype (Stbl2) to minimize the chances of deletion or rearrangement. We believe that this cloning strategy, with a low copy number vector and the sequential use of two E. coli strains, will be also applicable for the cloning of other toxic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号