首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
从GenBank获得人PTP1B催化活性区(PTP1Bc)氨基酸序列(1~301aa), 通过重叠PCR获得PTP1Bc基因。构建 pET-22b(+)/PTP1Bc原核表达载体, 转化大肠杆菌BL21(DE3), 阳性重组子IPTG诱导表达, Ni柱纯化蛋白。目的蛋白以包涵体的形式表达, 表达量占菌体总蛋白30%以上。纯化后, 蛋白纯度达95%以上。Western blotting结果表明所得的蛋白可与抗 PTP1B抗体发生特异性结合; 酶活实验证实复性的蛋白具有一定的磷酸酶活性。PTP1Bc基因的构建、表达纯化及活性分析, 为进一步的功能研究奠定了基础。  相似文献   

2.
采用PCR构建编码B群脑膜炎球菌fHBP蛋白V<,1>变异型全长序列和V<,2>变异型C结构域抗原表位融合蛋白的基因片段.并克隆入pET30a<'(+)>载体,转化大肠杆菌BL21(DE3),在其实现表达,表达量约占菌体蛋白总量的30%.表达产物经离子交换层析纯化后,获得了纯度达到90%以上的融合蛋白.将融合蛋白免疫小...  相似文献   

3.
蛋白酪氨酸磷酸酶1B(PTP1B)是胰岛索增敏的新靶点之一.本文研究了芳香新塔花、沙生蜡菊、驱虫斑鸠菊等3种维药石油醚提取物对PTP1B活性的影响及其对酶的抑制类型.结果表明,所构建的原核表达系统能高表达重组PTP1B(his-PTP1B1-321),分子量为40.8 kDa.3种维药提取物对PTP1B均表现出不同程度...  相似文献   

4.
人纤溶酶原饼环区5(hPK5)基因的分泌型表达   总被引:3,自引:0,他引:3  
构建人纤溶酶原饼环区5(hPK5)基因的原核可溶性表达载体并进行表达和纯化,获取大量高纯度、具有生物活性的hPK5蛋白。以纤溶酶原cDNA为模板,PCR扩增了hPK5基因,经过适当酶切后构建表达载体pET22b(+)hPK5,转入大肠杆菌BL21(DE3)进行表达并经组氨酸亲和层析获得纯化。带有重组质粒pET22b(+)hPK5的大肠杆菌经IPTG诱导后以可溶性形式表达16kDa的蛋白,其表达量占菌体总蛋白的30%以上,纯化后目的蛋白纯度达95%以上,Western印迹表明重组蛋白具有Histag抗原活性。构建了pET22b(+)hPK5重组质粒并成功地在大肠杆菌中获得可溶性表达,为获得大量hPK5基因工程产品奠定了实验基础。  相似文献   

5.
hK1-L-Fc融合蛋白在CHO细胞中的表达及其活性研究   总被引:1,自引:0,他引:1  
为进一步改造重组人激肽释放酶1(hK1),以期提高其生物活性,制备了通过柔性接头相连接的重组人激肽释放酶1-L-IgG1 Fc融合蛋白(hK1-L-Fc)。采用重叠延伸PCR技术构建hK1-L-Fc融合基因,克隆至表达载体pcDNA3.1,在中国仓鼠卵巢细胞(CHO-S)中表达。利用Protein A 亲和层析柱纯化融合蛋白,SDS-PAGE、Western blotting、飞行时间质谱(MALDI-TOF-MS)、HPLC检测表达产物,底物法检测融合蛋白的体外活性。结果显示:成功构建pcDNA3.1-hK1-L-Fc重组表达载体;获得稳定表达融合蛋白的细胞株;无血清悬浮批式培养的表达量在0.7 mg/L以上;纯化的蛋白其纯度在95%以上,分子量约60 kDa;活性检测显示其比活性在9.2 U/mg以上,较hK1-Fc蛋白提高了18%以上。  相似文献   

6.
旨在大肠杆菌中表达PSCA-HSPT0融合蛋白,并对其进行纯化.克隆人PSCA基因及HSP70基因,构建表达PSCA-HSP融合蛋白的工程菌,优化表达及纯化条件,对重组蛋白进行纯化.结果表明,成功构建重组表达质粒PSCA-HSP,重组蛋白得到可溶性表达,优化纯化条件后获得90%以上纯度的重组蛋白.本研究成功实现了PSCA与HSP的融合表达,为下一步肿瘤疫苗的研制奠定基础.  相似文献   

7.
目的利用大肠埃希菌系统可溶性表达人乳头瘤病毒18型(HPV18)L1蛋白,纯化和重组装获得HPV18病毒样颗粒(VLPs),为进一步研制HPV18基因工程疫苗奠定基础。方法首先按大肠埃希菌密码子偏好进行HPV18L1全基因合成,经PCR扩增出截短的HPV18L1基因,构建重组表达载体PET30a-L1,通过优化表达在大肠埃希菌BL21中可溶性表达L1蛋白,其次采用硫酸铵沉淀、离子交换层析、疏水层析后,获得高纯度的的L1蛋白,再通过解聚和重聚获得VLPs。结果全基因优化并截短的HPV18L1蛋白在大肠埃希菌系统中以可溶形式表达,纯化后的蛋白纯度达到90%以上,电镜下观察到直径为60 nm的VLPs颗粒。结论利用大肠埃希菌系统可溶性表达非融合HPV18L1蛋白,并获得均一的VLPs颗粒,为疫苗的开发奠定基础。  相似文献   

8.
目的:通过基于结构的基因突变获得鼠疫耶尔森菌F1抗原突变体(F1mut),克隆、表达并纯化F1mut-V融合蛋白。方法:通过3轮PCR,将编码F1抗原分子N端1~14位氨基酸的基因序列移到3'端,测序无误后将F1mut基因与V基因的5'端连接,构建改构的融合基因F1mut-V,将其克隆到原核表达载体p ET-32a后转化大肠杆菌BL21(DE3),经IPTG诱导后,目的蛋白为可溶性表达,通过硫酸铵分级沉淀、阴离子交换层析、疏水相互作用层析和凝胶过滤层析纯化,用SDS-PAGE和Western印迹分析纯化产物。结果:重组F1mut-V在大肠杆菌中为可溶性表达,表达量占全菌蛋白的25%以上,纯化后目的蛋白的纯度达95%,经Western印迹检测,与抗V、F1抗体均有特异性结合。结论:重组F1mut-V有望成为新一代亚单位疫苗的有效成分。  相似文献   

9.
寻求有效的肿瘤基因疗法,构建鸡贫血病毒VP3的减毒鼠伤寒沙门氏菌疫苗,并获得较纯的表达VP3基因的融合蛋白,初步研究其免疫原性.采用PCR技术扩增VP3基因,并将其与原核载体pET32α( )重组.将重组后质粒转染E.coli BL21,得到表达VP3的融合蛋白,并将此蛋白通过50%的Ni -NTA亲和树脂纯化.同时将重组质粒转染减毒沙门氏菌SL7207.经双酶切和PCR鉴定,成功构建了表达VP3的减毒沙门氏菌苗.融合蛋白通过50%的Ni -NTA亲和树脂纯化,得到纯度在90%以上的纯化蛋白.成功构建了表达VP3的减毒沙门氏菌苗,并且获得纯化的表达VP3的融合蛋白,为进一步研究VP3的免疫保护作用及对抗肿瘤疫苗的研制打下基础.  相似文献   

10.
目的:幽门螺旋杆菌(Hp)尿素酶是Hp重要的定制因子和致病因子,Hp尿素酶活性位点位于Hp尿素酶B亚基(UreB),研发基于UreB的Hp疫苗是一种很有前景的防治Hp感染的策略。方法:主要利用基因克隆技术从幽门螺旋杆菌标准菌株SS1(Hp SS1)获得Hp尿素酶B亚基基因,并构建含有重组Hp尿素酶B亚基(rUreB)基因的重组表达载体pET-rUreB及其重组菌株;重组菌株经蛋白表达和优化后,利用Ni-NTP镍离子亲和层析和DEAE Sepharose FF阴离子交换层析纯化重组尿素酶B亚基(rUreB),并进一步通过腹腔注射免疫BALB/c小鼠,研究rUreB的免疫学性质。结果:通过基因克隆技术成功获得了Hp尿素酶B亚基基因,并成功构建了重组表达载体pET-rUreB及其重组菌株BL21(DE3)/pET-rUreB,经蛋白表达优化及纯化,可获得高纯度(96.5%)的重组蛋白rUreB。重组蛋白rUreB辅以弗氏佐剂腹腔注射免疫BALB/c小鼠,经间接ELISA鉴定小鼠能够产生针对天然Hp尿素酶和UreB的高滴度特异性抗体,且能够显著性抑制Hp尿素酶的活性。结论:重组Hp尿素酶B亚基能够在大肠杆菌表达系统中获得较高水平的表达,具有较高的免疫学特异性,其抗体能够有效抑制Hp尿素酶活性。为研究基于尿素酶的防治Hp感染的Hp疫苗奠定了一定的实验基础。  相似文献   

11.
12.
The PCR cloning strategy for type II polyhydroxyalkanoate (PHA) biosynthesis genes established previously for Pseudomonas was successfully applied to Burkholderia caryophylli strain AS 1.2741. The whole pha locus containing PHA synthase genes phaC1, phaC2 and PHA depolymerase gene phaZ was cloned. The complete open reading frames of phaC1(Bc), phaC2(Bc) and phaZ(Bc) were identified. Sequence analyses of the phaC1(Bc), phaZ(Bc) and phaC2(Bc) showed more than 77.7%, 73.7% and 68.5% identities compared with the corresponding pha loci of the known Pseudomonas strains, respectively. The functional expression of the phaC1(Bc) or phaC2(Bc) in Escherichia coli strain KM32B (fadB deleted mutant) showed the abilities of PHA production by the estimated PHA synthase genes. Over 1% PHA consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) was detected from cells of recombinant E. coli KM32B (pHXM11) harboring phaC1(Bc), grown on octanoate. At the same time over 3% of PHA consisting of 3HO and 3HD was produced from cells of recombinant E. coli KM32B (pHXM21) harboring phaC2(BC), grown on decanoate. Results showed the PCR cloning strategy developed previously can be applied to non-Pseudomonas strains such as Burkholderia in this case. This result also provided evidence for the presumption that the Burkholderia strain possesses not only polyhydroxybutyrate synthase genes, but also synthase for medium-chain-length polyhydroxyalkanoates consisting of 3HHx, 3HO and 3HD.  相似文献   

13.
The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n=16) and hepatocellular carcinoma (n=169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6(+) tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.  相似文献   

14.
15.
The ubiquitously expressed protein tyrosine phosphatase PTP1B is involved in the regulation of numerous cellular signaling pathways. PTP1B is anchored to the ER membrane while many of its substrates are localized to the plasma membrane. This spatial separation raises the question how PTP1B can interact with its targets. In our study we demonstrate direct interaction of PTP1B with the Ser/Thr kinase PKCdelta, the non-receptor tyrosine kinase Src and the insulin receptor which all are key enzymes in cellular signaling cascades. Protein complex formation was visualized in vivo using Bimolecular Fluorescence Complementation (BiFC). We demonstrate that complex formation of PTP1B with plasma membrane-anchored proteins is possible without detachment of PTP1B from the ER. Our data indicate that the dynamic ER membrane network is in constant contact to the plasma membrane. Local attachments of the two membrane systems enable a direct communication of ER- and plasma membrane-anchored proteins. The reported formation of membrane junctions is an important step towards the understanding of signal transmissions between the ER and the plasma membrane.  相似文献   

16.
Mice heterozygous for insulin receptor (IR) and IR substrate (IRS)-1 deficiency provide a model of polygenic type 2 diabetes in which early-onset, genetically programmed insulin resistance leads to diabetes. Protein-tyrosine phosphatase 1B (PTP1B) dephosphorylates tyrosine residues in IR and possibly IRS proteins, thereby inhibiting insulin signaling. Mice lacking PTP1B are lean and have increased insulin sensitivity. To determine whether PTP1B can modify polygenic insulin resistance, we crossed PTP1B-/- mice with mice with a double heterozygous deficiency of IR and IRS-1 alleles (DHet). DHet mice weighed slightly less than wild-type mice and exhibited severe insulin resistance and hyperglycemia, with approximately 35% of DHet males developing diabetes by 9-10 weeks of age. Body weight in DHet mice with PTP1B deficiency was similar to that in DHet mice. However, absence of PTP1B in DHet mice markedly improved glucose tolerance and insulin sensitivity at 10-11 weeks of age and reduced the incidence of diabetes and hyperplastic pancreatic islets at 6 months of age. Insulin-stimulated phosphorylation of IR, IRS proteins, Akt/protein kinase B, glycogen synthase kinase 3beta, and p70(S6K) was impaired in DHet mouse muscle and liver and was differentially improved by PTP1B deficiency. In addition, increased phosphoenolpyruvate carboxykinase expression in DHet mouse liver was reversed by PTP1B deficiency. In summary, PTP1B deficiency reduces insulin resistance and hyperglycemia without altering body weight in a model of polygenic type 2 diabetes. Thus, even in the setting of high genetic risk for diabetes, reducing PTP1B is partially protective, further demonstrating its attractiveness as a target for prevention and treatment of type 2 diabetes.  相似文献   

17.
Phelps A  Wohlrab H 《Biochemistry》2004,43(20):6200-6207
The three Cys of the yeast (Saccharomyces cerevisiae) mitochondrial phosphate transport protein (PTP) subunit were replaced with Ser. The seven mutants (single, double, and complete Cys replacements) were expressed in yeast, and the homodimeric mutant PTPs were purified from the mitochondria and reconstituted. The pH gradient-dependent net phosphate (Pi) transport uptake rates (initial conditions: 1 mM [Pi]e, pHe 6.80; 0 mM [Pi]i, pHi 8.07) catalyzed by these reconstituted mutants are similar to those of the wild-type protein and range from 15 to 80 micromol Pi/min mg PTP protein. Aerobic media inhibit only the Pi uptake rates catalyzed by PTPs with the conserved (yeast and bovine) Cys28. This inhibition in the proteoliposomes is 84-95% and can be completely reversed by dithiothreitol. Transport by the wild type as well as by all mutant proteins with Cys28 is more than 90% inhibited by mersalyl. Transport catalyzed by mutant proteins with only Cys300 or only Cys134 is less sensitive, and that catalyzed by the no Cys mutant shows 40% inhibition by mersalyl. When dithiothreitol is removed from purified single Cys mutant proteins, only the mutant protein with Cys28 appears as a homodimer in a nonreducing SDS polyacrylamide gel. Thus, the function relevant transmembrane helix A, with Cys 28 about equidistant from the two inner membrane surfaces, is in close contact with parts of transmembrane helix A of the other subunit in the functional homodimeric PTP. The results identify for the first time not only a transmembrane helix contact site between the two subunits of a homodimeric mitochondrial transport protein but also a contact site that if locked into position blocks transport. The results are related to two available secondary transporter structures (lactose permease, glycerol-3-phosphate transporter) as well as to a low resolution projection structure and a high resolution structure of monomers of inhibitor ADP/ATP carrier complexes.  相似文献   

18.
Protein tyrosine phosphatase 1B (PTP1B) is believed to be one of the enzymes involved in down-regulating the insulin receptor and is a drug target for the treatment of type II diabetes. To better understand the in vitro and in vivo behavior of PTP1B inhibitors, a cell-based assay to directly measure enzyme occupancy of PTP1B by inhibitors using photoaffinity labeling was developed. Two photoaffinity probes were synthesized containing the photolabile diazirine moiety. These photoprobes were specific for PTP1B and T-cell protein tyrosine phosphatase over CD45, with the most potent photoprobe having an IC(50) value of 0.2nM for PTP1B. Activation of the photoprobes with a 40-W UV lamp in the presence of purified AspTyrLysAspAspAspAspLys (Flag)-PTP1B formed a 1:1 irreversible adduct with the enzyme. The photolabeling was competed by known PTP1B inhibitors, vanadate, and the peptide inhibitor N-benzoyl-l-glutamyl-[4-phosphono(difluoromethyl)]-l-phenylalanyl-[4-phosphono(difluoromethyl)]l-phenylalanineamide (BzN-EJJ-amide). In HepG2 (human hepatoma cell line) cells, endogenous PTP1B was labeled by the UV-activated photoprobes in both lysed and intact cells. Enzyme occupancy measurements were conducted with a series of PTP1B inhibitors using the photoprobe affinity assay. Several compounds were shown to bind to endogenous PTP1B in the HepG2 intact cells.  相似文献   

19.
Protein tyrosine phosphatases (PTPases) and protein tyrosine kinase (PTKases) regulate the phosphorylation and dephosphorylation of tyrosine residues in proteins, events that are essential for a variety of cellular functions. PTPases such as PTP1B and the Yersinia PTPase play an important role in diseases including type II diabetes and bubonic plague. A library of 67 bidentate PTPase inhibitors that are based on the alpha-ketocarboxylic acid motif has been synthesized using parallel solution-phase methods. Two aryl alpha-ketocarboxylic acids were tethered to a variety of different diamine linkers through amide bonds. The compounds were assayed in crude form against the Yersinia PTPase, PTP1B, and TCPTP. Six compounds were selected for further evaluation, in purified form, against the Yersinia PTPase, PTP1B, TCPTP, LAR, and CD45. These compounds had IC50 values in the low micromolar range against the Yersinia PTPase, PTP1B, and TCPTP, showed good selectivity for PTP1B over LAR, and modest selectivity over CD45. The correlation between linker structure and inhibitor activity shows that aromatic groups in the linker can play an important role in determining binding affinity in this class of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号