首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Clostridium acetobutylicum xylanase gene xyn10B (CAP0116) was cloned from the type strain ATCC 824, whose genome was recently sequenced. The nucleotide sequence of C. acetobutylicum xyn10B encodes a 318-amino acid protein. Xyn10B consists of a single catalytic domain that belongs to family 10 of glycosyl hydrolases. The enzyme was purified from recombinant Escherichia coli. The Xyn10B enzyme was highly active toward birchwood xylan, oat-spelt xylan, and moderately active toward avicel, carboxymethyl cellulose, polygalacturonic acid, lichenan, laminarin, barley--glucan and various p-nitrophenyl monosaccharides. Xyn10B hydrolyzed xylan and xylooligosaccharides to produce xylobiose and xylotriose. The pH optimum of Xyn10B was 5.0, and the optimal temperature was 70°C. The enzyme was stable at 60°C at pH 5.0–6.5 for 1 h without substrate. This is one of a number of xylan-related activities encoded on the large plasmid in C. acetobutylicum ATCC 824.  相似文献   

2.
Alkenyl ether analogues of phosphatidylglycerol (plasmenylglycerol), bisphosphatidylglycerol (cardiolipin) (plasmenylglycerolphosphatidic acid), monoglycosyldiglyceride and diglycosyldiglyceride were isolated from the polar lipids of Clostridium acetobutylicum and characterized by chemical analyses and degradation. The position of the alkenyl ether bond (at C-1) and of the acyl ester bond (at C-2) as well as the configuration at C-2 of the phospholipids are the same as of the alkenyl ether phospholipids known so far. The alkenyl ether analogue of monoglycosyldiglyceride contains a galactosyl residue, that of diglycosyldiglyceride a glucosyl-galactosyl residue, glucosyl forming the terminal unit.  相似文献   

3.
The pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum was purified to homogeneity and partially characterized. A 9.2-fold purification was achieved in a three step purification procedure: ammonium sulfate fractionation, chromatography on Phenyl Sepharose and on Procion Blue H-EGN12. The pure enzyme exhibited a specfic activity of 25 U/mg of protein. Homogeneity of the pyruvate-ferredoxin oxidoreductase was confirmed by native polyacrylamide gel electrophoresis and sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight was determined to be 123,000/monomer. The subunit composition of the native enzyme could not be determined because of the instability of the pure enzyme. The pyruvate-ferredoxin oxidoreductase is sensitive to oxygen and dilution during purification. The dilution inactivation could be partially overcome by the addition of 300 M coenzyme A or 50% ethyleneglycol. A thiamine pyrophosphate content of 0.39 mol per mol of enzyme monomer was found, the iron and sulfur content was 4.23 and 0.91, respectively. The pH-optimum was at pH 7.5 and the temperature optimum was at 60°C. Kinetic constants were measured in the forward reaction. The apparent K m for pyruvate and coenzyme A were 322 M and 3.7 M, respectively. With 2-ketobutyrate the pyruvate-ferredoxin oxidoreductase showed 12.5% of the activity compared to pyruvate. No activity was found with 2-ketoglutarate. Ferredoxin from Clostridium pasteurianum could be used as physiological electron acceptor.Non-standard abbreviations NAD(H) nicotinamide adenine dinucleotide (reduced) - NADP(H) nicotinamide adenine dinucleotide phosphate (reduced) - DTE dithioerythritol - PMS phenazine methosulfate - NBT nitro blue tetrazolium chloride - DMSO dimethyl sulfoxide - DCPIP dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl-tetrazolium bromide - TTC triphenyltetrazolium chloride - FAD flavin adenine dinucleotide - FMN flavin mononucleotide  相似文献   

4.
5.
Abstract Plasmid-containing strains of Clostridium acetobutylicum produced higher levels of solvents and lower levels of acids than wild-type cells in controlled pH 4.5 batch fermentations. This effect was observed regardless of whether or not the plasmids contained C. acetobutylicum genes. The effect was less prevalent in higher pH fermentations and apparently independent of the actual DNA sequences contained on these plasmids. The plasmid-containing strains were found to have lower growth-rates and higher solventogenic enzyme activities than wild-type cells. However, similar activity levels were found for both butyrate-pathway enzymes.  相似文献   

6.
Two endoxylanases produced by C. acetobutylicum ATCC 824 were purified to homogeneity by column chromatography. Xylanase A, which has a molecular weight of 65,000, hydrolyzed larchwood xylan randomly, yielding xylohexaose, xylopentaose, xylotetraose, xylotriose, and xylobiose as end products. Xylanase B, which has a molecular weight of 29,000, also hydrolyzed xylan randomly, giving xylotriose and xylobiose as end products. Xylanase A hydrolyzed carboxymethyl cellulose with a higher specific activity than xylan. It also exhibited high activity on acid-swollen cellulose. Xylanase B showed practically no activity against either cellulose or carboxymethyl cellulose but was able to hydrolyze lichenan with a specific activity similar to that for xylan. Both xylanases had no aryl-β-xylosidase activity. The smallest oligosaccharides degraded by xylanases A and B were xylohexaose and xylotetraose, respectively. The two xylanases demonstrated similar Km and Vmax values but had different pH optima and isoelectric points. Ouchterlony immunodiffusion tests showed that xylanases A and B lacked antigenic similarity.  相似文献   

7.
Clostridium acetobutylicum was unable to keep a constant pH inside the cells when grown on a phosphatelimited synthetic medium which allowed production of organic acids in a first phase and of solvents in a second phase. At external pH values between 5.9 and 4.3, the cells kept a constant pH of 0.9 to 1.3. A similar pH was measured in continuous culture under solventproducing conditions. The pH was abolished by protonovorous uncouplers, such as tetrachlorosalicylanilide (TCS) or carbonyl-p-trifluormethoxyphenylhydrazone (FCCP). n-Butanol at concentration of 150 mM and above led also to a complete abolition of the pH gradient.The internal pH stayed above 5.5 in cultures that shifted from acid to solvent formation. It is concluded that this is a prerequisite for the shift. The possible function of high internal concentrations of butyrate, butyryl phosphate and butyryl coenzyme A in the triggering mechanisms of the shift is discussed.Abbreviations TCS Tetrachlorosalicylanilide - FCCP carbonyl-p-trifluormethyoxyphenylhydrazone  相似文献   

8.
Summary Conditions that allow regeneration of cells fromClostridium acetobutylicum strain B643 protoplasts were studied. Protoplast formation and stabilization in minimal media with 50 mM CaCl2, 50 mM MgCl2 and 0.3 M sucrose were crucial to subsequent regeneration on soft yeast extract agar containing 25 mM CaCl2 and 25 mM MgCl2. A regeneration frequency of 8–25% was consistently obtained.  相似文献   

9.
A gene (CAC2657) encoding a ferredoxin (EFR1) from the strictly anaerobic soil bacterium Clostridium acetobutylicum was cloned and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 27 kDa that incorporates 2[4Fe–4S] clusters. An extended N-terminal region of 187 amino acid (aa) residues precedes ferredoxin domain. The EFR1 expressed in E. coli is a trimeric protein. The iron and sulfur content of the reconstituted protein agrees with that expected of a trimeric form of the protein. The ferredoxin domain of EFR1 is closely related to ferredoxin of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 0.62 As for the Cα atoms of the generated 3D simulation model. In cultures of C. acetobutylicum the efr1 gene shows higher relative expression on induction with Trinitrotoluene (TNT) compared to that from uninduced control cultures.  相似文献   

10.
Continuous cultures of two strains of Clostridium acetobutylicum were stable for over 70 d when grown on glucose/glycerol mixtures. Butanol was the major fermentation end-product, accounting for 43 to 62% (w/w) of total products. Low-grade glycerol [65% (w/v) purity] could replace commercial glycerol [87% (w/v) purity], leading to a similar fermentation pattern: a butanol yield of 0.34 (mol/mol), a butanol productivity of 0.42 g l–1 h–1 and a 84% (w/w) glycerol consumption were attained when cultures were grown at pH 6 and D = 0.05 h–1; butanol accounted for 94% (w/w) of total solvents. These values are among the highest reported in literature for C. acetobutylicum simple chemostats.  相似文献   

11.
The transposon-containing streptococcal plasmids pAM211, pCF10, and pINY1275 have been transferred at high frequency (10-2–10-3 per recipient, selecting for tetracycline resistance) to the Gram-positive anaerobe Clostridium acetobutylicum. Selection in the presence of two antibiotics (tetracycline and erythromycin) with the plasmids pAM 180 and pINY1275 yielded only low numbers of transconjugants (10-8 per recipient). Matings were done by combining liquid and filter mating procedures under anaerobic conditions. No plasmid DNA could be detected in the transconjugants selected on a minimal medium in the presence of tetracycline. DNA-DNA hybridization experiments with restricted chromosomal DNA using biotinylated pAM120::Tn916 as probe revealed the presence of homologous sequences in the transconjugants but not in Clostridium acetobutylicum wild type. The transconjugants were used as donors in mating experiments with tetracycline-sensitive Bacillus subtilis and Streptococcus lactis subspec. diacetylactis. In both cases tetracycline-resistant strains were found. Transfer frequencies in these experiments were less than 10-7 per recipient.  相似文献   

12.
The utilization of maltose by Clostridium acetobutylicum ATCC 824 was investigated. Glucose was used preferentially to maltose, when both substrates were present in the medium. Maltose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity was detected in extracts prepared from cultures grown on maltose, but not glucose or sucrose, as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that the specificity for maltose is contained entirely within the membrane in this organism. A putative gene system for the maltose PTS was identified (from the C. acetobutylicum ATCC 824 genome sequence), encoding an enzyme IIMal and a maltose 6-phosphate hydrolase. Journal of Industrial Microbiology & Biotechnology (2001) 27, 298–306. Received 12 September 2000/ Accepted in revised form 30 November 2000  相似文献   

13.
14.
The complete lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824 was reconstructed from two overlapping DNA fragments and cloned into a suitable plasmid enabling Escherichia coli to produce this lytic enzyme under the control of the lac promoter. A polypeptide with an apparent M(r) of 35,000, corresponding to that predicted from the nucleotide sequence, was observed by maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. The enzyme yield was shown to depend on the pH of the culture medium, since the protein was unstable at alkaline pH. The expression of the lyc gene was not increased by using the E. coli strong promoter, lpp-lac, probably due to the limit imposed by the extreme differences in codon usage. Although the LYC lysozyme does not contain a cleavable signal peptide, most of the protein was found in the periplasmic fraction of E. coli suggesting that this enzyme was secreted through a specific mechanism, as already observed for other autolysins.  相似文献   

15.
Summary Protocols for protoplast formation, L-colony cultivation, and regeneration ofClostridium beijerinckii NRRL B-592, B-593 andC. acetobutylicum ATCC 10132 were developed. Two osmotically reinforced media were formulated. Protoplasts of B-592, B-593, and ATCC 10132 grew as cell wall-deficient forms (L-colonies) when plated on the first medium (BLM) and continued to do so through at least 3 passages on this medium. The second (BRM) permitted the L-colonies to regenerate cell walls after transfer to this medium. TransferredC. beijerinckii B-592 L-colonies reverted to bacillary colonies at a frequency of 25%. Likewise, L-colonies of B-593 andC. acetobutylicum ATCC 10132 could be regenerated at frequencies of 7.0 and 8.6%, respectively. Thus, these procedures are suitable for genetic engineering of these industrial microorganisms using protoplast manipulation techniques.  相似文献   

16.
Summary DNA from Clostridium acetobutylicum ABKn8 was partially digested with Sau3A and the fragments obtained were inserted into the unique BamHI site of the cloning vector pHV33. The recombinant plasmids were used to transform Escherichia coli HB101 with selection for ampicillin resistance. A collection of ampicillin-resistant, tetracycline-sensitive clones representative of the Clostridium acetobutylicum genome was made. The clones were shown to carry recombinant plasmids each containing an insert of 2 to 16 kb in size. Several of them complemented the HB101 proA2 or leuB6 auxotrophic mutations. The cloned sequences were shown by Southern blot hybridization to be homologous to the corresponding ABKn8 DNA fragments.  相似文献   

17.
Clostridium acetobutylicum ATCC 824 was metabolically engineered for improved xylose utilization. The gene talA, which encodes transaldolase from Escherichia coli K-12, was cloned and overexpressed in C. acetobutylicum ATCC 824. Compared with C. acetobutylicum ATCC 824 (824-WT), the transformant bearing the E. coli talA gene (824-TAL) showed improved ability on xylose utilization and solvents production using xylose as the sole carbon source. During the fermentation of xylose and glucose mixtures with three xylose/glucose ratios (approximately 1:2, 1:1 and 2:1), the rate of xylose consumption and final solvents titers of 824-TAL were all higher than those of 824-WT, despite glucose repression on xylose uptake still existing. These results suggest that the insufficiency of transaldolase in the pentose phosphate pathway (PPP) of C. acetobutylicum is one of the bottlenecks for xylose metabolism and therefore, overexpressing the gene encoding transaldolase is able to improve xylose utilization and solvent production.  相似文献   

18.
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.  相似文献   

19.
Summary An examination into the effect of different carbohydrate sources indicated that the production of extracellular alpha-amylase and glucoamylase was under similar biosynthetic control inClostridium acetobutylicum SA-1. Cell-associated starch-hydrolytic enzymes may be more important than extracellular enzymes in the processing of the starch molecule.  相似文献   

20.
Sixteen Tn916-induced mutants of Clostridium acetobutylicum were selected that were defective in the production of acetone and butanol. Formation of ethanol, however, was only partially affected. The strains differed with respect to the degree of solvent formation ability and could be assigned to three different groups. Type I mutants (2 strains) were completely defective in acetone and butanol production and contained one or three copies of Tn916 in the chromosome. Analysis of the mutants for enzymes responsible for solvent production revealed the presence of a formerly unknown, specific acetaldehyde dehydrogenase. The data obtained also strongly indicate that the NADP+-dependent alcohol dehydrogenase is in vivo reponsible for ethanol formation, whereas the NAD+-dependent alcohol dehydrogenase is probably involved in butanol production. No activity of this enzyme together with all other enzymes in the acetone and butanol pathway could be found in type I strains. All tetracycline-resistant mutants obtained did no longer sporulate.Non-standard abbreviations AADC acetoacetate decarboxylase - AcaDH acetaldehyde dehydrogenase - BuaDH butyraldehyde dehydrogenase - CoA-TF acetoacetyl coenzyme A: acetate/butyrate: coenzyme A transferase - NAD-ADH, NAD+ dependent alcohol dehydrogenase - NADP-ADH, NADP+ dependent alcohol dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号