首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the in situ extraction of β-carotene from Dunaliella salina, the causal relationship between carotenoid extraction and cell death indicated that cell growth and cell death should be at equilibrium for a continuous in situ extraction process. In a flat-panel photobioreactor that was operated as a turbidostat cell numbers of stressed cells were kept constant while attaining a continuous well-defined light-stress. In this way it was possible to study the balance between cell growth and cell death and determine whether both could be increased to reach higher volumetric productivities of carotenoids. In the two-phase system a volumetric productivity of 8.3 mg β-carotene L(RV)(-1)d(-1) was obtained. In situ extraction contributed only partly to this productivity. The major part came from net production of carotenoid-rich biomass, due to a high growth rate of the cells and subsequent dilution of the reactor. To reach equilibrium between cell growth and cell death, sparging rates of dodecane could have been increased. However, already at the applied sparging rate of 286 L(dod)L(RV)(-1)min(-1) emulsion formation of the dodecane in the aqueous phase appeared. In a turbidostat without in situ extraction a volumetric productivity of 13.5 mg β-caroteneL(RV)(-1)d(-1) was reached, solely based on the continuous production of carotenoid-rich biomass.  相似文献   

2.
We show that it is possible to extract beta-carotene selectively from Dunaliella salina in two-phase bioreactors. The cells continue to produce beta-carotene and the extracted part is substituted by newly produced molecules. This process is called "milking." We performed several experiments to understand the exact mechanism of the extraction process. The results show that direct contact between the cells and the biocompatible organic solvent was not a requirement for the extraction but it accelerated the extraction. Electron microscopy photographs showed an undulated shape of the cell membrane and a space between the cell and the chloroplast membranes in the cells growing in the presence of dodecane (a biocompatible solvent). Extra-chloroplast beta-carotene globules located in the space between the cell and the chloroplast membranes were observed in these cells as well. It was shown that dodecane was taken up by the cells. The concentration of dodecane in the cells was about 13 pg.cll(-1). It can be concluded that dodecane uptake by the cells is responsible for the morphological changes in the cells and leads to more activity in the cell membrane. The results suggest two possible modes of extraction. One of the mechanisms is transport of the globules from the chloroplast to the space between the cell and the chloroplast membranes and subsequently from there to the outside by exocytosis. Another possible mode for the extraction could be release of beta-carotene from the globules as a result of alterations in the membrane in response to the uptake of dodecane. beta-Carotene molecules diffuse from the chloroplast to the space between the cell and the chloroplast membranes and from there to the medium either by diffusion or by exocytosis after accumulation in the vesicles.  相似文献   

3.
A novel tandem solvent process of dodecane and methanol was developed for the selective extraction of free astaxanthin from red encysted Haematococcus culture. The process consists of dodecane extraction for astaxanthin mixture from the culture (stage 1) and methanol extraction for free astaxanthin from the dodecane extract (stage 2). In the first stage, astaxanthin mixture was directly extracted to dodecane from the culture broth without cell harvest process, followed by a rapid separation of the dodecane extract and the culture medium containing cell debris by simple settling. In the second stage, free astaxanthin was selectively collected to methanol from the dodecane extract, accompanied with saponification of astaxanthin-esters by the addition of NaOH to methanol. During saponification, use of the optimum NaOH concentration (0.02 M) and low temperature (4 degrees C) reaction minimized the degradation of free astaxanthin, resulting in a total recovery yield of free astaxanthin of over 85%. The free-astaxanthin-containing methanol extract was also simply separated from dodecane by gravity settling, after which the astaxanthin-free dodecane was effectively recycled to the first stage, yielding a stable extractability of astaxanthin mixture during repeated extraction. Our results indicate the potential of the proposed tandem solvent process as an alternative extraction technology for the high-value antioxidant Haematococcus astaxanthin.  相似文献   

4.
We investigated the protection from photoinhibition by different developmental stages of Haematococcus lacustris [Girod] Rostafinski using chlorophyll fluorescence measurements of single cells and suspensions. An overall correlation between higher cellular content of secondary carotenoids and the capacity to withstand excessive irradiation was observed in flagellated cells and aplanospores of H. lacustris. Low-light-reversible spreading of extra-chloroplastic secondary carotenoids occurred in the periphery of the cell during strong irradiation. This process resulted in increased shading of the cup-shaped chloroplast as demonstrated by a decrease in chlorophyll fluorescence. Extrachloroplastic accumulation of secondary carotenoids in H. lacustris can be interpreted as a specific adaptation to habitats that exhibit strong insolation.  相似文献   

5.
Oleic acid esters were shown to be the best carbon source for both cell growth and lipase production by Candida rugosa. Use of a cosolvent, dodecane, in fermentations improved the solubility of solid substrates and increased oxygen solubility. This resulted in the highest lipase activity in batch fermentation with glycerol trioleate and dodecane. Lipase activity reached 77.1 units ml–1.  相似文献   

6.
Simultaneous production and selective extraction of beta-carotene from living cells of Dunaliella salina in a two-phase system of aqueous and organic phases has been investigated. Solvents with values of log P(octanol), which denotes hydrophobicity of a compound, ranging from 3 to 9 were used as organic phase. Viability and activity of Dunaliella salina in the presence of organic solvents were checked by microscopic observation and photosynthetic oxygen-production-rate measurements, respectively. Extraction ability of different solvents for both beta-carotene and chlorophyll was determined spectrophotometrically. In addition, beta-carotene contents of the cells growing in the aqueous phase and extracted beta-carotene by the different organic phases were quantified by the same method. Results showed that solvents having log P(octanol) > 6 can be considered biocompatible for this alga. Moreover, pigment extraction ability of a solvent is inversely dependent on its log P(octanol) value. By increasing the degenerative hydrophobicity the extraction ability for both chlorophyll and beta-carotene, decreases. However, this decrease is more profound for chlorophyll. Therefore, selective extraction of beta-carotene becomes feasible. Comparison of the total beta-carotene produced in the presence and in the absence of solvents shows that the presence of a second phase of biocompatible solvents in the culture media may induce the beta-carotene production pathway. The beta-carotene productivity per cell in a two-phase system with dodecane was the highest observed. Extraction ability of the biocompatible solvents dodecane, tetradecan, and hexadecane was similar.  相似文献   

7.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

8.
beta-Carotene has many applications in the food, cosmetic, and pharmaceutical industries; Dunaliella salina is currently the main source for natural beta-carotene. We have investigated the effect of mixing rate and whether it leads to the facilitated release of beta-carotene from the cells of Dunaliella salina in two-phase bioreactors. Three pairs of bioreactors were inoculated at the same time, operated at 100, 150, and 170 rounds per minute, respectively, and illuminated with a light intensity of 700 micromol m(-2) s(-1). Each pair consisted of one bioreactor containing only aqueous phase for the blank and one containing the water phase together with dodecane, which is biocompatible with the cells. Comparison of the viability and growth of the cells grown under different agitation rates shows that 170 rpm and 150 rpm are just as good as 100 rpm. The presence and absence of the organic phase also has no influence on the viability and growth of the cells. In contrast to the growth rate, the extraction rate of beta-carotene is influenced by the stirrer speed. The extraction rate increases at a higher stirring rate. The effectiveness of extraction with respect to power input is comparable for all the applied mixing rates, even though it is slightly lower for 100 rpm than the others. The chlorophyll concentration in the organic phase remained very low during the experiment, although at higher mixing rates, chlorophyll impurity increased up to 3% (w/w) of the total extracted pigments. At 170 rpm carotenoid and chlorophyll undergo the highest extraction rate for both pigments-0.5% of the chlorophyll and 6% of the carotenoid is extracted.  相似文献   

9.
Abstract

The cell wall of carotenoids producing yeast Sporidiobolus pararoseus was broken through five different methods: acid-heating method, dimethyl sulfoxide (DMSO) method, enzymatic method, high-pressure homogenization (HPH) method, and cell autolysis method. HPH method not only brought the optimum breaking effect (wall-breaking extent of 72.3%) and the highest carotenoid extraction rate (67.2%), but also had the advantages of short-time, simple process, safe, and pollution-free. After optimization, the wall-breaking extent and the carotenoid extraction rate were enhanced to 78.3% and 82.5%, respectively. And the optimum conditions of HPH were obtained as homogenization pressure 80?MPa, bacterial liquid concentration 8% and homogenization for three times. Moreover, cell experiments demonstrated that all of the four carotenoids (β-carotene, γ-carotene, torulene, and torularhodin) purified from intracellular products of S. pararoseus. had the effect of resistance to oxidative damage from hydrogen peroxide on SK-HEP-1 cells, and torulene showed the most notable effect among them.  相似文献   

10.
11.
A rapid and efficient microwave-assisted extraction (MAE) process for the selective extraction of embelin from Embelia ribes was developed. Solvent selection, microwave energy input and solid loading were optimized. The rate of extraction and purity of embelin depended upon the solvent used and exposure time to microwaves. Maximum MAE was achieved in acetone with total yield of 92% (w/w) embelin with 90% (w/w) purity with 1% (w/v) raw material loading at 150 W power level in 80 s. Non-polar solvents, such as hexane and dichloromethane, were not effective for the selective extraction of embelin.  相似文献   

12.
Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida were clarified. Differentiation and cell death of ray tracheids occurred successively and both were related to the distance from the cambium. In this respect, they resembled those of longitudinal tracheids. Thus, the cell death of short-lived ray tracheids could be characterized as time-dependent programmed cell death. In contrast, ray parenchyma cells survived for several years or more, and no successive cell death occurred, even within a single radial line of cells in a ray. Thus, the features of death of the ray parenchyma cells were different from those of ray tracheids. Cell death occurred early in ray parenchyma cells that were in contact with ray tracheids. The initiation of secondary wall thickening occurred earlier in ray parenchyma cells that were in contact with ray tracheids in Pinus densiflora than in others. In addition, localized thickening of secondary walls occurred only in ray parenchyma cells that were in contact with ray tracheids in Pinus rigida. Moreover, no polyphenols were evident in such cells in either species. Therefore, ray parenchyma cells that were in contact with ray tracheids appeared not to play a role in the formation of heartwood extractives. Our observations indicate that short-lived ray tracheids might affect the pattern of differentiation and, thus, the functions of neighboring long-lived ray parenchyma cells in conifers.  相似文献   

13.
A green, downstream process using common vegetable oils was used for the direct extraction of astaxanthin from Haematococcus. The process consists of a single integrated unit to extract astaxanthin with subsequent separation of the astaxanthin-containing oil extract. Without a cell harvest process step, the culture broth was directly mixed with the vegetable oils; the astaxanthin inside the cell was extracted into the vegetable oil phase by hydrophobic interactions, with recovery yields of 88% and above. The oil extracts were simply separated from the culture medium containing cell debris by gravity settling only.  相似文献   

14.
Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii × P. grandidentata which form uniseriate and homocellular rays were examined and clarified. Ray parenchyma cells died within 5 years, and the disappearance of nuclei from ray parenchyma cells did not occur successively from the pith side, even within individual radial cell lines of a given ray. Cell death occurred earliest in contact cells, which were connected to adjacent vessel elements through pits, in the fourth annual ring from the cambium. Cell death occurred next in intermediate cells, which were located within the same cell lines as contact cells but were not adjacent to vessel elements, in the fourth annual ring from the cambium. Finally, isolation cells, which were located within the other cell lines of a given ray, died in the fifth annual ring from the cambium. Secondary wall thickenings in contact cells and intermediate cells were initiated before those in isolation cells in the current year’s xylem. Most starch grains were localized in intermediate cells, and there were more lipid droplets in contact cells and intermediate cells than in isolation cells. In addition, the largest quantities of protein were found in contact cells. Our results indicate that the position within a ray and neighboring short-lived vessel elements might affect the timing of cell death and differentiation and, thus, the function of long-lived ray parenchyma cells in Populus sieboldii × P. grandidentata.  相似文献   

15.
Vibrio alginolyticus is a gram-negative bacterium and has been recognized as an opportunistic pathogen in marine animals as well as humans. Here, we further characterized a cell death mechanism caused by this bacterium in several mammalian cell lines. The T3SS of V. alginolyticus killed HeLa cells by a very similar cell cytolysis mechanism in fish cells, as evidenced by cell rounding and LDH release; however, DNA fragmentation was not observed. Further studies showed that caspase-1 and caspase-3 were not activated during the T3SS-mediated cell death, indicating that the death mechanism is completely independent of pyroptosis and apoptosis in HeLa cells. Conversely, autophagy was detected during the T3SS-mediated cell death by the appearance of MDC-labeled punctate fluorescence and accumulation of autophagic vesicles. Moreover, western blot analysis revealed increase in conversion of LC3-I to LC3-II in infected mammalian cell lines, confirming that autophagy occurs during the process. Together, these data demonstrate that the death process used by V. alginolyticus in mammalian cells is different from that in fish cells, including induction of autophagy, cell rounding and osmotic lysis. This study provides some evidences hinting that differences in death mechanism in responses to V. alginolyticus infection may be attributed to the species of infected cells from which it was derived.  相似文献   

16.
In this study, physico-chemical modifications and community dynamics and functional role of the resident microbiota during composting of humid husk from a two-phase extraction system (TPOMW) were investigated. High mineralization and humification of carbon, low loss of nitrogen and complete degradation of polyphenols led to the waste biotransformation into a high-quality compost. Viable cell counts and denaturing gradient gel electrophoresis (DGGE) profiling of the 16S rRNA genes showed that the thermophilic phase was characterized by the strongest variations of cell number, the highest biodiversity and the most variable community profiles. The isolation of tannin-degrading bacteria (e.g. Lysinibacillus fusiformis, Kocuria palustris, Tetrathiobacter kashmirensis and Rhodococcus rhodochrous) suggested a role of this enzymatic activity during the process. Taken together, the results indicated that the composting process, particularly the thermophilic phase, was characterized by a rapid succession of specialized bacterial populations with key roles in the organic matter biotransformation.  相似文献   

17.
《Autophagy》2013,9(8):1069-1072
Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearences are common for both cell death types. Autophagy features are also exhibited during the prepupal period. One of the lysosomal marker enzymes, acid phosphatase, levels are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that only apoptotic cell death not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation.

Addendum to: Goncu E, Parlak O. Morphological changes and patterns of ecdysone receptor B1 immunolocalization in the anterior silk gland undergoing programmed cell death in the silkworm, Bombyx mori. Acta Histochem 2008; In press.  相似文献   

18.
Investigation of genetic variability of the short-living filamentous fungus Podospora anserina during its adaptation to conditions of prolonged submerged cultivation has been carried out for the first time. Cultivation of P. anserina under aeration (on a shaker) provides pronounced selective pressure, which makes it possible to obtain isolates with specific features, which are well adapted to cultivation in liquid media and have a life span several times exceeding that of the original strain. Static cultivation did not prevent the ageing of P. anserina. Repeated transfers in the shaker culture resulted in formation of mycelium deprived of the dark pigment melanin and actively producing carotenoids under illumination. The qualitative composition of P. anserina carotenoids was the same as in the closely-related species Neurospora crassa. The features obtained during the shaker cultivation (including changes in the colony morphology and decreased capacity for melanin synthesis) are inherited by their hybrids with the wild type strains, i.e., they resulted from the intragenomic rearrangements occurring during submerged cultivation of the fungus.  相似文献   

19.
Biological treatment methods are effective at destroying polycyclic aromatic hydrocarbons (PAHs), and some of the highest rates of PAH degradation have been achieved using two-phase-partitioning bioreactors (TPPBs). TPPBs consist of a cell-containing aqueous phase and a biocompatible and immiscible organic phase that partitions toxic and/or recalcitrant substrates to the cells based on their metabolic demand and on maintaining the thermodynamic equilibrium of the system. In this study, the degradation of a 5-component mixture of high and low molecular weight PAHs by a defined microbial consortium of Sphingomonas aromaticivorans B0695 and Sphingomonas paucimobilis EPA505 in a TPPB was examined. The extremely low aqueous solubilities of the high molecular weight (HMW) PAHs significantly reduce their bioavailability to cells, not only in the environment, but in TPPBs as well. That is, in the two-phase system, the originally selected solvent, dodecane, was found to sequester the HMW PAHs from the cells in the aqueous phase due to the inherent high solubility of the hydrophobic compounds in this solvent. To circumvent this limitation, the initial PAH concentrations in dodecane were increased to sufficient levels in the aqueous phase to support degradation: LMW PAHs (naphthalene, phenanthrene) and fluoranthene were degraded completely in 8 h, while the HMW PAHs, pyrene and benzo[a]pyrene, were degraded by 64% and 11%, at rates of 42.9 mg l−1 d−1 and 7.5 mg l−1 d−1, respectively. Silicone oil has superior PAH partitioning abilities compared to dodecane for the HMW PAHs, and was used to improve the extent of degradation for the PAH mixture. Although silicone oil increased the bioavailability of the HMW PAHs and greater extents of biodegradation were observed, the rates of degradation were lower than that obtained in the TPPB employing dodecane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号