首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human land-use activities differ from natural disturbance processes and may elicit novel biotic responses and disrupt existing biotic-environmental relationships. The widespread prevalence of land use requires that human activity be addressed as a fundamental ecological process and that lessons from investigations of land-use history be applied to landscape conservation and management. Changes in the intensity of land use and extent of forest cover in New England over the past 3 centuries provide the opportunity to evaluate the nature of forest response and reorganization to such broad-scale disturbance. Using a range of archival data and modern studies, we assessed historical changes in forest vegetation and land use from the Colonial period (early 17th century) to the present across a 5000 km2 area in central Massachusetts in order to evaluate the effects of this novel disturbance regime on the structure, composition, and pattern of vegetation and its relationship to regional climatic gradients. At the time of European settlement, the distribution of tree taxa and forest assemblages showed pronounced regional variation and corresponded strongly to climate gradients, especially variation in growing degree days. The dominance of hemlock and northern hardwoods (maple, beech, and birch) in the cooler Central Uplands and oak and hickory at lower elevations in the Connecticut Valley and Eastern Lowlands is consistent with the regional distribution of these taxa and suggests a strong climatic control over broad-scale vegetation patterns. We infer from historical and paleoecological data that intensive natural or aboriginal disturbance was minimal in the Uplands, whereas infrequent surface fires in the Lowlands may have helped to maintain the abundance of central hardwoods and to restrict the abundance of hemlock, beech, and sugar maple in these areas. The modern vegetation is compositionally distinct from Colonial vegetation, exhibits less regional variation in the distribution of tree taxa or forest assemblages defined by tree taxa, and shows little relationship to broad climatic gradients. The homogenization of the vegetation, disruption of vegetation-environment relationships, and formation of new assemblages appear to be the result of (a) a massive, novel disturbance regime; (b) ongoing low-intensity human and natural disturbance throughout the reforestation period to the present; (c) permanent changes in some aspects of the biotic and abiotic environment; and (d) a relatively short period for forest recovery (100–150 years). These factors have maintained the regional abundance of shade intolerant and moderately tolerant taxa (for example, birch, red maple, oak, and pine) and restricted the spread and increase of shade-tolerant, long-lived taxa such as hemlock and beech. These results raise the possibility that historical land use has similarly altered vegetation-environment relationships across broader geographic regions and should be considered in all contemporary studies of global change. Received 5 May 1997; accepted 5 August 1997.  相似文献   

2.
Abstract. Throughout the eastern United States, plant species distributions and community patterns have developed in response to heterogeneous environmental conditions and a wide range of historical factors, including complex histories of natural and anthropogenic disturbance. Despite increased recognition of the importance of disturbance in determining forest composition and structure, few studies have assessed the relative influence of current environment and historical factors on modern vegetation, in part because detailed knowledge of prior disturbance is often lacking. In the present study, we investigate modern and historical factors that control vegetation patterns at Harvard Forest in central Massachusetts, USA. Similar to the forested uplands throughout the northeastern United States, the site is physiographically heterogeneous and has a long and complex history of natural and anthropogenic disturbance. However, data on forest composition and disturbance history collected over the past > 90 years allow us to evaluate the importance of historical factors rigorously, which is rarely possible on other sites. Soil analyses and historical sources document four categories of historical land use on areas that are all forested today: cultivated fields, improved pastures/mowings, unimproved pastures, and continuously forested woodlots. Ordination and logistic regressions indicate that although species have responded individualistically to a wide range of environmental and disturbance factors, many species are influenced by three factors: soil drainage, land use history, and C:N ratios. Few species vary in accordance with ionic gradients, damage from the 1938 hurricane, or a 1957 fire. Contrary to our expectation that the effects of disturbance will diminish over time, historical land use predicts 1992 vegetation composition better than 1937 composition, perhaps because historical woodlots have become increasingly differentiated from post-agricultural stands through the 20th century. Interpretations of modern vegetation must consider the importance of historical factors in addition to current environmental conditions. However, because disturbances such as land use practices and wind damage are complex, it is often difficult to detect disturbance effects using multivariate approaches, even when the broad history of disturbance is known.  相似文献   

3.
Historical and ecological data from north-central Massachusetts suggest that widespread and intensive human disturbance after European settlement led to a shift in forest composition and obscured regional patterns of species abundance. A paleoecological approach was required to place recent forest dynamics in a long-term context. Pollen and charcoal data from 11 small lakes in north-central Massachusetts were used to reconstruct local vegetation dynamics and fire histories across the region over the past 1000 years. The sites are located across an environmental gradient. Paleoecological data indicate that prior to European settlement, there was regional variation in forest composition corresponding to differences in climate, substrate, and fire regime. Oak, chestnut, and hickory were abundant at low elevations, whereas hemlock, beech, sugar maple, and yellow birch were common at high elevations. Fire appears to have been more frequent and/or intense at lower elevations, maintaining high abundances of oak, and archaeological data suggest Native American populations were greater in these areas. A change in forest composition at higher elevations, around 550 years before present, may be related to the Little Ice Age (a period of variable climate), fire, and/or activity by Native Americans, and led to regional convergence in forest composition. After European settlement, forest composition changed markedly in response to human disturbance and there was a sharp increase in rates of vegetation change. Regional patterns were obscured further, leading to homogenization of broad-scale forest composition. There is no indication from the pollen data that forests are returning to pre-European settlement forest composition, and rates of vegetation change remain high, reflecting continuing disturbance on the landscape, despite regional reforestation. Received 14 May 1997; accepted 5 August 1997.  相似文献   

4.
森林植被的自然火干扰   总被引:18,自引:1,他引:18  
邱扬 《生态学杂志》1998,17(1):54-60
森林植被的自然火干扰邱扬(山西大学黄土高原研究所,太原030006)NaturalFireDisturbanceofForestVegetation.QiuYang(InstituteofLoesPlateau,ShanxiUniversity,...  相似文献   

5.
Secondary forests are increasingly important components of human-modified landscapes in the tropics. Successional pathways, however, can vary enormously across and within landscapes, with divergent regrowth rates, vegetation structure and species composition. While climatic and edaphic conditions drive variations across regions, land-use history plays a central role in driving alternative successional pathways within human-modified landscapes. How land use affects succession depends on its intensity, spatial extent, frequency, duration and management practices, and is mediated by a complex combination of mechanisms acting on different ecosystem components and at different spatial and temporal scales. We review the literature aiming to provide a comprehensive understanding of the mechanisms underlying the long-lasting effects of land use on tropical forest succession and to discuss its implications for forest restoration. We organize it following a framework based on the hierarchical model of succession and ecological filtering theory. This review shows that our knowledge is mostly derived from studies in Neotropical forests regenerating after abandonment of shifting cultivation or pasture systems. Vegetation is the ecological component assessed most often. Little is known regarding how the recovery of belowground processes and microbiota communities is affected by previous land-use history. In published studies, land-use history has been mostly characterized by type, without discrimination of intensity, extent, duration or frequency. We compile and discuss the metrics used to describe land-use history, aiming to facilitate future studies. The literature shows that (i) species availability to succession is affected by transformations in the landscape that affect dispersal, and by management practices and seed predation, which affect the composition and diversity of propagules on site. Once a species successfully reaches an abandoned field, its establishment and performance are dependent on resistance to management practices, tolerance to (modified) soil conditions, herbivory, competition with weeds and invasive species, and facilitation by remnant trees. (ii) Structural and compositional divergences at early stages of succession remain for decades, suggesting that early communities play an important role in governing further ecosystem functioning and processes during succession. Management interventions at early stages could help enhance recovery rates and manipulate successional pathways. (iii) The combination of local and landscape conditions defines the limitations to succession and therefore the potential for natural regeneration to restore ecosystem properties effectively. The knowledge summarized here could enable the identification of conditions in which natural regeneration could efficiently promote forest restoration, and where specific management practices are required to foster succession. Finally, characterization of the landscape context and previous land-use history is essential to understand the limitations to succession and therefore to define cost-effective restoration strategies. Advancing knowledge on these two aspects is key for finding generalizable relations that will increase the predictability of succession and the efficiency of forest restoration under different landscape contexts.  相似文献   

6.
The current need for forest conservation and management has driven a rapid expansion of landscape genetics approach. This discipline combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. This approach could be appropriate to sweet chestnut (Castanea sativa Mill.), a multipurpose species of great economic importance in the Mediterranean basin and a species considered to be a good model of integration between natural and human-driven distribution of diversity. Sixteen chestnut populations, covering the distribution range of the species in Spain, were analysed using seven microsatellite markers. Results revealed a high level of genetic diversity in Spanish chestnut populations, which in part followed a geographical pattern, although distribution was not homogeneous. Likewise, areas particularly rich in diversity were detected, facilitating the development of a hypothesis about the history of chestnut in Spain. In conclusion, these results provide valuable baseline data for more in-depth studies on chestnut landscape genetics that can contribute to its conservation.  相似文献   

7.
In order to understand and moderate the effects of the accelerating rate of global environmental change land managers and ecologists must not only think beyond their local environment but also put their problems into a historical context. It is intuitively obvious that historians should be natural allies of ecologists and land managers as they struggle to maintain biodiversity and landscape health. Indeed, ‘environmental history’ is an emerging field where the previously disparate intellectual traditions of ecology and history intersect to create a new and fundamentally interdisciplinary field of inquiry. Environmental history is rapidly becoming an important field displacing many older environmentally focused academic disciplines as well as capturing the public imagination. By drawing on Australian experience I explore the role of ‘environmental history’ in managing biodiversity. First I consider some of the similarities and differences of the ecological and historical approaches to the history of the environment. Then I review two central questions in Australian environment history: landscape‐scale changes in woody vegetation cover since European settlement and the extinction of the marsupials in both historical and pre‐historical time. These case studies demonstrate that environmental historians can reach conflicting interpretations despite using essentially the same data. The popular success of some environmental histories hinges on the fact that they narrate a compelling story concerning human relationships and human value judgements about landscape change. Ecologists must learn to harness the power of environmental history narratives to bolster land management practices designed to conserve biological heritage. They can do this by using various currently popular environmental histories as a point of departure for future research, for instance by testing the veracity of competing interpretations of landscape‐scale change in woody vegetation cover. They also need to learn how to write parables that communicate their research findings to land managers and the general public. However, no matter how sociologically or psychologically satisfying a particular environmental historical narrative might be, it must be willing to be superseded with new stories that incorporate the latest research discoveries and that reflects changing social values of nature. It is contrary to a rational and publicly acceptable approach to land management to read a particular story as revealing the absolute truth.  相似文献   

8.
The persistence of larger mammals in fragmented forest landscapes depends not only on the protection of remaining habitats but also on ecological restoration sites. It is known that the landscape context is an important predictor of species persistence, abundance and distribution. Here we evaluate how landscape characteristics influence the recovery of larger mammals in ecological restoration sites. We assess the richness and composition of mammals in forest fragments and restoration sites using landscape metrics such as forest cover and connectivity. Forest fragments and restoration sites present the same richness (n = 26), but differ in species composition. Some seed-dispersing mammals were absent in restoration areas, such as Alouatta guariba (brown howler monkey) and Coendou spinosus (paraguayan hairy dwarf porcupine). The percentage of forest cover in the landscape was responsible for 29.09% of the variation in species composition between the evaluated forest formations, exerting a positive or negative influence depending on the species requirements. The results demonstrate the importance of considering not only landscape metrics in an ecological restoration plan, but also the historical landscape context, such as the fauna composition before the disturbance and how these species respond to environmental changes, thus improving the success of future ecological restoration measurements and policies.  相似文献   

9.
Abstract. Remaining deciduous forests in the Fennoscandian boreal landscape have high ecological value, and are considered as key components of the forest landscape as well as remnants of a former natural forest type. To improve our understanding of the formation of deciduous forests, we studied past disturbance regimes and vegetation dynamics in three deciduous forests in boreal Sweden using dendro‐ecology, pollen analysis and charcoal analysis. We identified three stages in the development of the studied stands. Firstly, the coniferous period (pre 1800), a long‐lasting period characterized by frequent fires, livestock grazing and extensive agriculture during which Pinus sylvestris was dominant. Secondly, the transformation period (1800 ‐ 1900), when logging removed most pines from the sites while fire and grazing continued. At the time of the last fire, the sites lacked a local seed source of pines, resulting in a post‐fire succession dominated by deciduous species with the capacity to disperse over long distances. Thirdly, the deciduous period (1900 ‐ present), with little or no disturbance from fire, grazing or logging. Thus, the present deciduous stands have their origins in a complex interaction between changes in fire regime, extensive land use patterns and logging, contrary to earlier simplified explanations. We conclude that the complexity of historical patterns of land use, vegetation dynamics and disturbance should be acknowledged in the future when selecting areas for nature conservation and developing models for ecologically oriented forestry.  相似文献   

10.
盛浩  宋迪思  周萍  夏燕维  张杨珠 《生态学报》2017,37(14):4676-4685
了解底土溶解性有机质(DOM)的数量和化学结构对土地利用变化的响应,对科学评价区域土壤有机质动态和碳库稳定性具有重要意义。通过选取花岗岩红壤丘陵区同一景观单元的天然林地(常绿阔叶林)以及由此转变而来的杉木人工林、板栗园和坡耕地,采用化学分析结合光谱扫描(紫外光谱、二维荧光光谱和傅里叶变换红外光谱)技术,研究底土(0.2—1 m)和表土(0—0.2 m)DOM数量和结构对土地利用变化的响应差异,结果表明:58%—87%的DOM贮存在底土中。天然林地土壤的DOM数量最为丰富,底土DOM的宏观化学结构比表土更为简单,以碳水化合物、类蛋白为主。天然林转变为其他利用方式后,底土DOM的损失量(26%—41%)超过表土(12%—49%),冬季比夏季更为凸显;这反映底土DOM数量对人为干扰和植被变化的高度敏感性。同时,底土DOM宏观化学结构趋于复杂化,芳香类、烷烃类和烯烃类的化学抗性物质出现积累的现象。DOM光谱曲线形状、特定峰值、特征值对土地利用的响应敏感,对人为干扰后植被、土壤有机质的变化具有生态指示意义。研究显示,天然林地转变为其他利用方式后,不仅导致底土DOM的损失,也显著降低土壤有机质品质,长期上削弱底土的碳库稳定性和碳吸存能力。  相似文献   

11.
We have examined the relationship between the history of fluvial disturbance and understory vegetation in a riparian forest. The study site was divided into three sites, by use of aerial photographs and topographical maps, with different histories of fluvial disturbance: (1) Fagus-type on land that has not been flooded for the last 39 years, at least; (2) Populus-type on land that has not been flooded since debris flow occurred 34 years ago; and (3) Salix-type on land that has been flooded periodically from an abandoned channel since debris flow occurred 34 years ago. Species richness in the Salix-type was significantly higher than in the other types. Detrended correspondence analysis revealed obvious floristic differences among the three canopy types. Canonical correspondence analysis showed that herbaceous species were mainly found on lower plots with high moss cover, implying that moss layers may capture seeds transported by the stream. Tall herbs occurred in less shaded plots and on higher plots, suggesting that their rapid growth prevented the occurrence of other species. Fagus-type was dominated by species with ingested fruits which depended on animals for their dispersal. Populus and Salix-types were dominated by species with wind dispersal or no dispersal mechanism, which depended on physical phenomena for dispersal. Attributes of current understory vegetation were connected with historical events, suggesting that riparian vegetation reflects the history of fluvial disturbance.  相似文献   

12.
Woodland key habitats (WKHs) form a network of local biodiversity hotspots in human-dominated landscapes of northern Europe. They have been designated based on the presence of old-growth species and structures, and are considered to indicate long-term forest cover. To test whether WKHs do particularly occur in continuous forest land and to explore the scale dependence of relationships between WKH presence and their historical and environmental properties, we analysed them at five spatial scales (from stand to landscape: 80–2500 m) and referring to four reference years (1790, 1860, 1910, and 2010) using univariate and multivariate analyses. We upscaled the georeferenced data using a moving window approach. The study area encompassed 94,886 contiguous forest stands in a boreo-nemoral region of southern Latvia (5178 km2) with a relatively short history of intensive land use. At the scale of stands, the presence of WKHs, ranging from 0.1 to 59 ha in size, best corresponded to highly variable land-use histories 100–220 years ago such as natural succession on abandoned land, drained bogs and wetlands, and only partly to continuous forest cover for more than 220 years. We identified short-term (50–70 years) and small-scale (up to 250 m) gaps in past forest cover as significant positive predictors of WKH presence, which resemble patterns caused by natural disturbances. At broader scales (800–2500 m), best explanatory variables were the presence of old forest fragments throughout the landscape, at least 100 years of continuous forest cover, changes in forest cover, i.e., afforestation, between 1790 and 1860, and the proximity to bogs and rivers. We also found that correlations between WKH presence and forest patch density converted from negative coefficients at small spatio-temporal scales to positive ones at broader spatio-temporal scales. Our results highlight the importance of using multi-scale information on land-use history to improve both the understanding and the management of biodiversity in cultural landscapes. In brief, instead of long-term continuous forest cover, we found a surprisingly diverse and dynamic land-use history in places that have been designated as WKHs.  相似文献   

13.
Northern boreal forest reserves that display no signs of modern forest exploitation are often regarded as pristine and are frequently used as ecological reference areas for conservation and restoration. However, the long-term effects of human utilization of such forests are rarely investigated. Therefore, using both paleoecological and archaeological methods, we analyzed temporal and spatial gradients of long-term human impact in a large old-growth forest reserve in the far north of Sweden, comparing vegetational changes during the last millennium at three sites with different land use histories. Large parts of the forest displayed no visible signs of past human land use, and in an area with no recognized history of human land use the vegetation composition appears to have been relatively stable throughout the studied period. However, at two locations effects of previous land use could be distinguished extending at least four centuries back in time. Long-term, but low-intensity, human land use, including cultivation, reindeer herding and tree cutting, has clearly generated an open forest structure with altered species composition in the field layer at settlement sites and in the surrounding forest. Our analysis shows that past human land use created a persistent legacy that is still visible in the present forest ecosystem. This study highlights the necessity for ecologists to incorporate a historical approach to discern underlying factors that have caused vegetational changes, including past human activity. It also indicates that the intensity and spatial distribution of human land use within the landscape matrices of any forests should be assessed before using them as ecological references. The nomenclature of vascular plants follows Krok and Almquist (Svensk flora. Fanerogamer och ormbunksväxter, 2001).  相似文献   

14.
Processes involved in the structuring of forest communities include: (1) ecological sorting, where species poorly suited to local conditions are subject to environmental filtering and competitive displacement; (2) disturbance, resulting in stochastic removal of individuals and reinitiating successional regimes and (3) dispersal limitation, inhibiting the infiltration of species into preferred sites. Temporal dynamics in these processes lead to difficulty inferring causal landscape?Cbiota correlations. Complicating factors include potential for ontogenetic variation in habitat preferences among age classes, and inherent ambiguity regarding severity and coverage of historical disturbance events. Sorting species into age groups can provide relevant temporal information. Fundy National Park is a northern, mixed-temperate forest in Atlantic Canada (Acadian forest type), which was pervasively altered upon European settlement. Species frequency data for three tree age classes (saplings, juveniles and adults) in permanent sample plots (400?m2, n?=?33) were compared to environmental data, including soil chemistry, understory light conditions, physiography and disturbance history using ordination and randomization techniques. Abiotic and disturbance-related predictors of species distributions differed among life stages. Specifically, in the adult stage, stand age was a critical predictor of distribution, whereas in younger age classes environmental variables such as nutrient availability and soil moisture and drainage were key drivers of distribution. It is concluded that older populations were increasingly less constrained by environmental conditions, suggesting that adult populations bear the legacy of stochastic landscape alteration, thus appearing randomly distributed along environmental gradients. As younger populations gradually expand in distribution, they are filtered into preferred conditions by ecological sorting. These findings indicate the importance of considering age-class effects and site history in further assessments of interactions between landscapes and flora.  相似文献   

15.
Increasingly, modern ecologists are realizing that the history of ecological systems is crucially important for understanding the landscape and that human land use has a great impact on the trajectory of ecosystems. The Yazoo Basin of Mississippi (USA) is one area in which palaeoecological and archaeological research has been done, but at a time when interpretations of the results relied on paradigms that gave credence only to climate change as a causal factor in explaining vegetation histories of plant communities. This paper uses knowledge of ecological processes and patterns of plant colonization and succession to make testable expectations for vegetation composition and change related to human action. An existing pollen record from the area is then examined in light of these expectations and reveals evidence that humans were an integral part of the ecosystem in this area, influencing the trajectory of vegetation history over thousands of years.  相似文献   

16.
The ecological and economic relevance of sweet chestnut (Castanea sativa Mill.) has long been related to its widespread geographical distribution and multipurpose product potential. In Central Italy, chestnut management represents a paradigmatic example of the potential conflict between landowner targets and biodiversity conservation: options for preserving stand-scale biodiversity are not fully considered as current management is based on monospecific, even-aged coppice stands and clearcutting on wide areas. Relationships between silvicultural treatment and floristic diversity of chestnut coppices are here investigated focusing the attention on rotation length and on the role of thinning. Seven coppice stands were selected in such a way to be of similar size (about 10 ha) and to cover a wide range of ages and a different number of thinnings. Plot sampling was performed across the stands and their floristic diversity was compared and analyzed by means of indicators in order to assess statistical relationships between floristic data and stand structural attributes. The achieved results suggest alternative suitable options for managing chestnut coppice stands in order to enhance biodiversity while maintaining wood production.  相似文献   

17.
In this study, the impact of forest disturbance on earthworm assemblages was assessed using monoliths dug out at 5 m intervals along a gradient of land-use intensification. The land-use types comprised primary forest (as a baseline), secondary forest, tree plantation, fallow, perennial and annual crop. Forest disturbance resulted in a significant decrease in soil organic carbon and pH, while earthworm abundance and biomass increased along the gradient of disturbance. Surprisingly, anthropogenic disturbances in semi-deciduous forest areas have not led to the disappearance of native species to the benefit of exotic species as revealed in former studies. As a result, in this study land-use change had no impact on species richness at the landscape level, even if at local scales, recurrent Chromolaena odorata fallows, multispecies tree plantations and 4 year-old teak plantations hosted the highest average species richness. Multiple regression analyses performed between earthworm communities and environmental variables showed that soil organic carbon and pH are potential indicators of earthworm abundance change.  相似文献   

18.
Land-use history as a predictor of invasive alien plant distributions has received little study, especially across large spatial and temporal scales. Here we evaluate the importance of land-use history and other environmental characteristics as predictors of the distributions of a suite important invasive woody plant species in the northeastern United States. Using historical aerial photographs, we delineated 69 years (1934–2003) of land-use change across a typically heterogeneous 95 km2 landscape. We randomly surveyed over 500 sites for six invasive plant species. We found that land use history patterns strongly affected presence and abundance of the invasive plants as a group, but affected some species more than others. Generally, past agricultural use favored invasive species, whereas intact forest blocks discouraged them. Current land-use trends toward residential/commercial development favor disturbance-adapted species like Celastrus orbiculatus (asiatic bittersweet) and will probably slow the spread of post-agricultural specialists such as Berberis thunbergii (Japanese barberry).  相似文献   

19.
Disturbances play an important role in forest dynamics across the globe. Researchers have mainly focused on the temporal context of disturbances, but have largely ignored the spatial patterns of tree recruitment they create. Geostatistical tools enable the analysis of spatial patterns and variability in tropical forest disturbance histories. Here, we examine the potential of combining dendroecological analysis and spatial statistics to reconstruct the disturbance history of a seasonal dry evergreen tropical forest plot at the Huai Kha Khaeng Wildlife Sanctuary (HKK), western Thailand. We used tree‐ring‐derived age estimates for 70 individuals of the shade‐intolerant pioneer species Melia azederach (Meliaceae) and tree locations across a 316‐ha study plot to identify the timing and spatial extent of past disturbances. Although the age distribution for Melia suggested that regeneration had been continuous over the past 60 yr, spatial analyses (mark correlation function and kriging) demonstrated the presence of three spatially discrete age cohorts. Two of these cohorts suggested a severe disturbance ~20 yr before present. A third cohort appears to have established ~50 years ago. Using historical records, we conclude that fire disturbance is the most likely disturbance factor affecting HKK. Nevertheless, we do not rule out other disturbance factors. The combined application of tree‐ring analysis and spatial statistics as applied in this study could be readily applied to reconstruct disturbance histories in other tropical regions where tree species with annual growth rings are present.  相似文献   

20.
The land-use history of an ecosystem influences current structure and possibly response to modern disturbances and stresses. In semiarid systems the nature of land-use legacies is poorly understood, confounding efforts to establish sustainable management approaches. We compare previously cultivated and non-cultivated lands in Owens Valley, California, where cultivation once extended to 34% of the valley floor but was largely discontinued by 1940, to measure the influence of past disturbance on modern vegetation. We combined historic maps of cultivated and non-cultivated land with an extensive vegetation survey, historic aerial photographs, and satellite measurements of vegetation response to precipitation variability to examine the importance of land-use history in determining the sensitivity of vegetation to annual variations in precipitation. Remote sensing analysis showed that total plant cover on previously cultivated lands was lower and fluctuations in cover were marginally more dependent on precipitation compared with plant cover on non-cultivated lands. We then compared modern plant assemblages within cultivated and non-cultivated land to determine if compositional differences could explain the current patterns of vegetation cover. We found lower species richness on previously cultivated parcels, and higher frequency and cover of perennial grasses on non-cultivated lands. Therefore, we showed differences in land-cover patterns, isolated a mechanism that could account for the differences (species differences), and developed a method for remotely analyzing land regions that have experienced historic anthropogenic disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号