首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.Abbreviations 9-HFCA 9-hydroxyfluorenecarboxylic acid - NPA naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - IAA indole-3-acetic acid  相似文献   

2.
We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(β-aminoethylether)-N,N,N′, N′-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.  相似文献   

3.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

4.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

5.
We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 M) that did not affect root growth. Calmodulin antagonists ( 1M) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip ( 1M) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists ( 1 M) become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.  相似文献   

6.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

7.
Indoleacetic acid (IAA)-5-3H (2 × 10−9M) was applied to intact roots of Phaseolus coccineus seedlings, at the apex or 2 cm above the apex, at various pHs and in the presence of Cu2+ and NaCl. The transport of label in the roots was then examined after 6 h by cutting the roots into 1 mm sections above and below the zone of treatment. Basipetal movement from 2 cm above the apex was unafected by pH, Cu2+ or NaCl. Acropetal movement from the same area decreased with increasing pH from 5.4 to 8.0, probably due to an effect of pH on the entry of IAA into the cells. pH had no effect on sucrose transport. Cu2+ also inhibited acropetal movement but NaCl had no effect. Basipetal movement of label from the apex was reduced by Cu2+ and increasing pH, but not as much as with acropetal movement, and increased by the presence of NaCl. These facts are interpreted as showing 3 different systems of IAA movement in intact roots: basipetal from 2 cm up the root in some extracellular physical system; acropetal from 2 cm up the root, and basipetal from the apex, in a metabolically dependent intracellular system, but in different tissues of the root. It is proposed that endogenous IAA not only moves into the root from the stem but is also synthesized in the root apex, and moves basipetally for a short distance to the root growing zone in a separate system from the IAA descending from the stem.  相似文献   

8.
To investigate the spatial and temporal dependence of hormonal regulation during gravitropism, we compared the effects of root cap application of indole-3-acetic acid (IAA) and abscisic acid (ABA) with gene expression changes occurring naturally during gravitropic reaction of Brassica rapa roots. The expression of auxin, ABA, and metabolism-related genes in the tip, elongation zone, and maturation zone varied with time, location, and hormone concentration and characterized polar auxin transport. IAA was transported readily shootward and inhibited growth more than ABA. Expression of PIN3 and IAA5 in the elongation zone showed downregulation on the convex but upregulation on the concave side. Both PIN7 and IAA5 responded near maximally to 10?8 M IAA within 30 min, suggesting that auxin activates its own transport system. Ubiquitin 1 (UBQ1) responded after a lag time of more than 1 h to IAA. The metabolic control gene Phosphoenolpyruvate carboxylase 1 (PEPC1) was more sensitive to ABA but upregulated by high concentrations of either hormone. The time course and duration of gene activation suggests that ABA is not involved in gravitropic curvature, differential elongation is not simply explained by IAA-induced upregulation, and that reference genes are sensitive to auxin.  相似文献   

9.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

10.
The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.  相似文献   

11.
Pinpoint applications of labeled and non-labeled indoleacetic acid (IAA) on resin beads were made, without injury, to vertical roots of intact seedlings of Zea mays. Points of application were at the extreme tip of the root, 0.5, 2 and 5 mm from the root tip. The movement of label and bending of the roots was recorded. Radiolabel was found to move basipetally from the extreme tip and 0.5 mm applications to a similar extent, reaching 8 mm from the tip. The level of label in the growing zone after 4 h was 10% of that found in the extreme tip. Movement from 2 and 5 mm applications was equal in both directions. Higher amounts of non-labeled IAA caused bending towards the point of application if applied at 0.5 or 2 mm but not at 5 mm from the tip. It is proposed that any endogenous IAA in the root cap could move to the growing zone and cause a unilateral inhibition of growth, provided that it was in the same transport pool as the exogenously applied IAA.  相似文献   

12.
Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.  相似文献   

13.
When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several steps of the root gravireaction.  相似文献   

14.
The polarity of movement of gibberellin through sections cut from near the root tips of Zea mays L. was studied, using methods like those we previously used in roots for auxin and in petioles for auxins, cytokinins, and gibberellic acid (GA-3). One μg GA-3 was added in a donor agar block and gibberellin activity in the receiver agar at the opposite end of the section was measured directly with a modified barley endosperm bioassay. The movement of gibberellin was away from the root tip (basipetal) and thus opposite in direction to the polarity of auxin through such root sections. The time-course of basipetal movement was dissimilar to that for gibberellin or auxin movement through petiole sections. It took 14-18 hr for gibberellin activity equivalent to 6 ng GA-3 to collect in the basal receivers on roots. Apical receivers showed activity equivalent to 1.6 ng GA-3 at 14-18 hr. Less than 0.01 ng equivalent GA-3 was collected from sections to which GA-3 was not added, so the 6 and 1.6 ng were almost entirely due to the added GA-3. These general conclusions were confirmed with an experiment using 14C-GA-3. A decline in activity in receivers was found in some experiments at 18 hr, paralleling earlier results with GA-3, IAA, and adenine in petioles and IAA in roots.  相似文献   

15.
A. Chanson  P. E. Pilet 《Planta》1982,154(6):556-561
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.Abbreviations ABA abscisic acid - 3,3-DGA 3,3-dimethyl-glutaric acid - DPA dihydrophaseic acid - PA phaseic acid - GCMS gas chromatography-mass spectrometry  相似文献   

16.
3H-IAA transport in excised sections of carnation cuttings was studied by using two receiver systems for recovery of transported radioactivity: agar blocks (A) and wells containing a buffer solution (B). When receivers were periodically renewed, transport continued for up to 8 h and ceased before 24 h. If receivers were not renewed, IAA transport decreased drastically due to immobilization in the base of the sections. TIBA was as effective as NPA in inhibiting the basipetal transport irrespective of the application site (the basal or the apical side of sections). The polarity of IAA transport was determined by measuring the polar ratio (basipetal/acropetal) and the inhibition caused by TIBA or NPA. The polar ratio varied with receiver, whereas the inhibition by TIBA or NPA was similar. Distribution of immobilized radioactivity along the sections after a transport period of 24 h showed that the application of TIBA to the apical side or NPA to the basal side of sections, increased the radioactivity in zones further from the application site, which agrees with a basipetal and acropetal movement of TIBA and NPA, respectively. The existence of a slow acropetal movement of the inhibitor was confirmed by using 3H-NPA. From the results obtained, a methodological approach is proposed to measure the variations in polar auxin transport. This method was used to investigate whether the variations in rooting observed during the cold storage of cuttings might be related to changes in polar auxin transport. As the storage period increased, a decrease in intensity and polarity of auxin transport occurred, which was accompanied by a delay in the formation and growth of adventitious roots, confirming the involvement of polar auxin transport in supplying the auxin for rooting. Received April 19, 1999; accepted December 2, 1999  相似文献   

17.
The movement of auxin in Phaseolus vulgaris roots has been examined after injection of IAA?3H into the basal root/hypocotyl region of intact, dark-grown seedlings. Only a portion of the applied IAA?3H was transported unchanged to the root tip. The major part of the chromatographed, labelled compounds translocated to the roots was indole-3-acetylaspartic acid (IAAsp) and an unidentified compound running near the front in isopropanol, ammonia, water. The velocity of the auxin transport (7.2 mm per hour) was calculated from scintillation countings of methanol extracts from serial sections of the root. An accumulation of radioactive compounds in the extreme root tip, was observed 5 h after the injection of IAA. The influence of exogenous IAA on the geotropical behaviour of the bean seedling roots was examined. Pretreated roots were stimulated for 5 min in the horizontal position and then rotated parallel to the horizontal axis of the klinostat for 60 or 90 min. The resulting geotropic curvature of IAA-injected and control roots showed significantly different patterns of development. When the stimulation was started 5 h after application of the auxin, the geotropic curvature became larger in roots of the injected plants than in the controls. If, however, the translocation period was extended to 20 h the geotropic curvature was significantly smaller in the roots of the injected plants. The auxin injection did not significally affect the rate of root elongation. The change in geotropical behaviour of the roots is interpreted as a result of the influence of the conversion products of the applied IAA on the geotropical responsiveness.  相似文献   

18.
19.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

20.
The movement of calcium across the elongation zone of gravistimulatedprimary roots of maize (Zea mays L.) was measured using 45Ca2$.Radioactive calcium was applied to one side of the elongationzone about 4 mm back from the root tip and the distributionof radioactivity across the root in the region of applicationwas determined using scintillation spectrometry. The movementof 45Ca2$ across the elongation zone was non-polar in verticallyoriented roots. In gravistimulated roots the movement of labelwas polarized with about twice as much label moving from topto bottom as from bottom to top. A variety of treatments whichinterfere with gravitropism was found to eliminate the polarmovement of 45Ca2$ across the elongation zone. In maize cultivarswhich require light for gravitropic competency, dark grown rootsexhibited neither gravitropism nor polar movement of 45Ca2$across the elongation zone. Upon illumination the roots developedboth gravitropic competency and gravity-induced polar movementof 45Ca2$ across the elongation zone. Similarly, roots of light-grownseedlings lost both gravitropic competency and 45Ca2$ transportpolarity upon transfer to the dark. The results indicate a closecorrelation between calcium movement and gravitropism in primaryroots of maize. (Received July 20, 1985; Accepted September 25, 1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号