首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface exposed fibronectin-binding proteins (FBPs) play an important role in the adherence of Streptococcus pyogenes (group A streptococcus, GAS) to host cells. This pathogen expresses numerous FBPs, of which SfbI, SfbII and PrtF2 are major surface exposed FBPs. However, GAS strains differ in the genetic potential to express these proteins. To test whether this difference reflects in differences in fibronectin (Fn) binding, a set of circulating strains previously examined for adherence to host cells was used. The 68 distinct strains were isolated from throat, skin and blood. They were analyzed for (a) the presence of genes for SfbI, SfbII and PrtF2 and (b) the extent of Fn binding. The results suggest that strains possessing two or more of the genes for these FBPs bound Fn significantly more than strains possessing none or one of the genes. No correlation between the extent of Fn binding and the tissue site of isolation was found. Furthermore, together with our previous studies on adherence capacity of these GAS strains, we found no correlation between Fn binding ability and the avidity of the strains to adhere to epithelial cells. We suggest that while Fn binding is important for adhesion, for many GAS strains the extent of Fn binding is not the critical determinant of adherence.  相似文献   

2.
The group A Streptococcus (GAS) is an important pathogen that is responsible for a wide range of human diseases. Fibronectin binding proteins (FBPs) play an important role in promoting GAS adherence and invasion of host cells. The prtF2 gene encodes an FBP and is present in approximately 60% of GAS strains. In the present study we examined 51 prtF2-positive GAS strains isolated from the Northern Territory of Australia, and here we describe two genotypes of prtF2 which are mutually exclusive. The two genotypes have been identified previously as pfbp and fbaB. We show that these genotypes map to the same chromosomal location within the highly recombinatorial fibronectin-collagen-T antigen (FCT) locus, indicating that they arose from a common ancestor, and in this study these genotypes were designated the pfbp type and the fbaB type. Phylogenetic analysis of seven pfbp types, 14 fbaB types, and 11 prtF2-negative GAS strains by pulsed-field gel electrophoresis (PFGE) produced 32 distinct PFGE patterns. Interpretation of evolution based on the PFGE dendrogram by parsimony suggested that the pfbp type had a recent origin compared to the fbaB type. A comparison of multiple DNA sequences of the pfbp and fbaB types revealed a mosaic pattern for the amino-terminal region of the pfbp types. The fbaB type is generally conserved at the amino terminus but varies in the number of fibronectin binding repeats in the carboxy terminus. Our data also suggest that there is a possible association of the pfbp genotype with sof (84.2%), while the fbaB genotype was found in a majority of the GAS strains negative for sof (90.6%), indicating that these two prtF2 subtypes may be under different selective pressures.  相似文献   

3.
Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year. GAS infections require the capacity of the pathogen to adhere to host tissues and assemble in cell aggregates. Furthermore, a role for biofilms in GAS pathogenesis has recently been proposed. Here we investigated the role of GAS pili in biofilm formation. We demonstrated that GAS pilus-negative mutants, in which the genes encoding either the pilus backbone structural protein or the sortase C1 have been deleted, showed an impaired capacity to attach to a pharyngeal cell line. The same mutants were much less efficient in forming cellular aggregates in liquid culture and microcolonies on human cells. Furthermore, mutant strains were incapable of producing the typical three-dimensional layer with bacterial microcolonies embedded in a carbohydrate polymeric matrix. Complemented mutants had an adhesion and aggregation phenotype similar to the wild-type strain. Finally, in vivo expression of pili was indirectly confirmed by demonstrating that most of the sera from human patients affected by GAS-mediated pharyngitis recognized recombinant pili proteins. These data support the role of pili in GAS adherence and colonization and suggest a general role of pili in all pathogenic streptococci.  相似文献   

4.
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.  相似文献   

5.
The human‐adapted pathogen group A Streptococcus (GAS) utilizes wounds as portals of entry into host tissue, wherein surface adhesins interact with the extracellular matrix, enabling bacterial colonization. The streptococcal collagen‐like protein 1 (Scl1) is a major adhesin of GAS that selectively binds to two fibronectin type III (FnIII) repeats within cellular fibronectin, specifically the alternatively spliced extra domains A and B, and the FnIII repeats within tenascin‐C. Binding to FnIII repeats was mediated through conserved structural determinants present within the Scl1 globular domain and facilitated GAS adherence and biofilm formation. Isoforms of cellular fibronectin that contain extra domains A and B, as well as tenascin‐C, are present for several days in the wound extracellular matrix. Scl1‐FnIII binding is therefore an example of GAS adaptation to the host's wound environment. Similarly, cellular fibronectin isoforms and tenascin‐C are present in the tumor microenvironment. Consistent with this, FnIII repeats mediate GAS attachment to and enhancement of biofilm formation on matrices deposited by cancer‐associated fibroblasts and osteosarcoma cells. These data collectively support the premise for utilization of the Scl1‐FnIII interaction as a novel method of anti‐neoplastic targeting in the tumor microenvironment.  相似文献   

6.
7.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

8.
Group A streptococci (GAS) produce several secreted products that are thought to enhance pathogenicity by facilitating spread of the organisms through host tissues. Two such products, streptolysin O (SLO) and NAD+-glycohydrolase, appear to be functionally linked, in that SLO is required for transfer of NAD+-glycohydrolase into epithelial cells. However, the effects of NAD+-glycohydrolase on host cells are largely unexplored. We now report that SLO-mediated delivery of NAD+-glycohydrolase to the cytoplasm of human keratinocytes results in major changes in host cell biology that enhance GAS pathogenicity. We derived isogenic mutant strains deficient in the expression of SLO, NAD+-glycohydrolase or both proteins in the background of a virulent, M-type 3 strain of GAS. All three mutant strains were internalized by human keratinocytes more rapidly and in higher numbers than were organisms from the wild-type strain. Association of the mutant strains with keratinocytes also resulted in reduced cytotoxicity and reduced keratinocyte apoptosis compared with wild-type GAS. These results support a model in which NAD+-glycohydrolase contributes to GAS pathogenesis by modulating host cell signalling pathways to inhibit GAS internalization, to augment SLO-mediated cytotoxicity and to induce keratinocyte apoptosis. We conclude that NAD+-glycohydrolase is a novel type of bacterial toxin that acts intracellularly in the infected host to enhance the survival and proliferation of an extracellular pathogen.  相似文献   

9.
The bacterial pathogen Group A Streptococcus (GAS) colonizes epithelial and mucosal surfaces and can cause a broad spectrum of human disease. Through the secreted plasminogen activator streptokinase (Ska), GAS activates human plasminogen into plasmin and binds it to the bacterial surface. The resulting surface plasmin protease activity has been proposed to play a role in disrupting tissue barriers, promoting invasive spread of the bacterium. We investigated whether this surface protease activity could aid the immune evasion role through degradation of the key innate antimicrobial peptide LL-37, the human cathelicidin. Cleavage products of plasmin-degraded LL-37 were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Ska-deficient GAS strains were generated by targeted allelic exchange mutagenesis and confirmed to lack surface plasmin activity after growth in human plasma or media supplemented with plasminogen and fibrinogen. Loss of surface plasmin activity left GAS unable to efficiently degrade LL-37 and increased bacterial susceptibility to killing by the antimicrobial peptide. When mice infected with GAS were simultaneously treated with the plasmin inhibitor aprotinin, a significant reduction in the size of necrotic skin lesions was observed. Together these data reveal a novel immune evasion strategy of the human pathogen: co-opting the activity of a host protease to evade peptide-based innate host defenses.  相似文献   

10.
Liang X  Ji Y 《Cellular microbiology》2006,8(10):1656-1668
Staphylococcus aureus is an important human and animal pathogen. During infection, this bacterium is able to attach to and enter host cells by using its cell surface-associated factors to bind to the host's extracellular matrix (ECM) proteins. In this study, we determined that a protein exported by S. aureus, alpha-toxin, can interfere with the integrin-mediated adhesion and internalization of S. aureus by human lung epithelial cells (A549). The downregulation of alpha-toxin production significantly increased bacterial adhesion and invasion into the epithelial cells. In contrast, bacterial adhesion and invasion was inhibited by both overproduction of alpha-toxin and the addition of alpha-toxin to the culture medium. Moreover, our results showed that the quantitative effects on invasion closely parallel those of adherence. This suggests that the effect on invasion is probably secondary to, and a consequence of, the reduced adherence caused by alpha-toxin exposure. Specifically, we demonstrated that alpha-toxin interacts with the hosts' ECM protein's receptor, beta1-integrin, which indicates that beta1-integrin may be a potential receptor of alpha-toxin on epithelial cells. Taken together, our results indicate that exported alpha-toxin inhibits the adhesion and internalization of S. aureus by interfering with integrin-mediated pathogen-host cell interactions.  相似文献   

11.
Group A Streptococcus pyogenes (GAS) is an important human pathogen that frequently causes pharyngitis. GAS organisms can adhere to and invade pharyngeal epithelial cells, which are overlaid by salivary components. However, the role of salivary components in GAS adhesion to pharyngeal cells has not been reported precisely. We collected human saliva and purified various salivary components, including proline-rich protein (PRP), statherin, and amylase, and performed invasion assays. The GAS-HEp-2 association ratio (invasion/adhesion ratio) and invasion ratio of GAS were increased significantly with whole human saliva and PRP, while the anti-PRP antibody inhibited the latter. GAS strain NY-5, which lacks M and F proteins on the cell surface, was promoted to cohere with HEp-2 cells by whole human saliva and PRP. The 28-kDa protein of GAS bound to PRP and was identified as GrpE, a chaperone protein, whereas the N-terminal of GrpE was found to bind to PRP. A GrpE-deficient mutant of GAS strain B514Sm, TR-45, exhibited a reduced ability to adhere to and invade HEp-2 cells. Microscopic observations showed the GrpE was mainly expressed on the surface of the cell division site of GAS. Furthermore, GrpE-deficient mutants of GAS and Streptococcus pneumoniae showed an elongated morphology as compared with the wild type. Taken together, this is the first study to show an interaction between salivary PRP and GAS GrpE, which plays an important role in GAS infection on the pharynx, whereas the expression of GrpE on the surface of GAS helps to maintain morphology.  相似文献   

12.
Protein tyrosine phosphorylation is an important regulatory mechanism for many cellular processes in eucaryotic cells. During the invasion of the gram-positive pathogen, Listeria monocytogenes, into host epithelial cells, two host proteins become tyrosine phosphorylated. We have identified these major tyrosine phosphorylated species to be two isoforms of mitogen-activated protein (MAP) kinase, the 42 and 44 kDa MAP kinases. This activation begins within 5 to 15 min of bacterial infection. The tyrosine kinase inhibitor, genistein, blocks invasion as well as the tyrosine phosphorylation of these MAP kinases. Using cytochalasin D to block bacterial internalization but not adhesion, we showed that bacterial adherence rather than uptake is required for MAP kinase activation. Internalin mutants, which are unable to adhere efficiently to host cells, do not trigger MAP kinase activation. Other invasive bacteria, including enteropathogenic Escherichia coli (EPEC), and E. coli expressing Yersinia enterocolitica invasion, were not observed to activate MAP kinase during invasion into cultured epithelial cells. These results suggest that L. monocytogenes activates MAP kinase during invasion and a MAP kinase signal transduction pathway may be involved in mediating bacterial uptake.  相似文献   

13.
Streptococcus pneumoniae is a major bacterial pathogen involved in the development of otitis media. The pathogenic mechanisms of this middle ear disease, including the bacterial adherence mechanisms to the mucosal epithelial cells of the host, are poorly understood. In this study, the role of glycosaminoglycans in the adhesion of pneumococci to mucosal epithelial cells is examined. Both nasopharyngeal epithelium from rats and an oral epithelial cell line were used for pneumococcal adherence experiments. Preincubation of pneumococci with heparin, heparan sulfate (HS) and to a lesser extent, chondroitin 4-sulfate (C-4S), was found to inhibit attachment of S. pneumoniae to oral epithelial cells, while dermatan sulfate and hyaluronate did not interfere with pneumococcal binding. Enzymatic removal of HS moieties by heparinase III from nasopharyngeal epithelial cells abolished the attachment of pneumococci to nasopharyngeal epithelium. This study demonstrates that heparin, HS and C-4S are involved in pneumococcal binding to mucosal epithelial cells. This knowledge may contribute to the development of a new prophylactic strategy for otitis media.  相似文献   

14.
Paracoccidioides brasiliensis is an important fungal pathogen. The disease it causes, paracoccidioidomycosis (PCM), ranges from localized pulmonary infection to systemic processes that endanger the life of the patient. Paracoccidioides brasiliensis adhesion to host tissues contributes to its virulence, but we know relatively little about molecules and the molecular mechanisms governing fungal adhesion to mammalian cells. Triosephosphate isomerase (TPI: EC 5.3.1.1) of P. brasiliensis (PbTPI) is a fungal antigen characterized by microsequencing of peptides. The protein, which is predominantly expressed in the yeast parasitic phase, localizes at the cell wall and in the cytoplasmic compartment. TPI and the respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis to in vitro cultured epithelial cells. TPI binds preferentially to laminin, as determined by peptide inhibition assays. Collectively, these results suggest that TPI is required for interactions between P. brasiliensis and extracellular matrix molecules such as laminin and that this interaction may play an important role in the fungal adherence and invasion of host cells.  相似文献   

15.
The group A streptococci (GAS, Streptococcus pyogenes) are important human pathogens which can cause a variety of diseases, ranging from mild infections to very severe invasive diseases. In recent years, evidence has been accumulated that host genetic factors have a major influence on the outcome of streptococcal infections. Variability in the degree of susceptibility of different inbred mouse strains to infection with GAS has demonstrated that the host genetic background largely determines the susceptibility of mice to this pathogen. This information is particularly useful for studying the immune mechanisms underlying disease susceptibility in mice, and provides an entry point for the identification of host defence loci. This paper reviews the recent advances in the characterisation of pathogenic mechanisms associated with the development of GAS-induced septic shock in the mouse model and outlines the current knowledge regarding the genetic control of immune responses to Group A streptococcus in mice.  相似文献   

16.
Group A Streptococcus (GAS) is a versatile human pathogen causing diseases ranging from uncomplicated mucosal infections to life-threatening invasive disease. The development of human-relevant animal models of GAS infection and introduction of new technologies have markedly accelerated the pace of discoveries related to GAS host–pathogen interactions. For example, recently investigators have identified pili on the GAS cell surface and learned that they are key components for adherence to eukaryotic cell surfaces. Similarly, the recent development of a transgenic mouse expressing human plasminogen has resulted in new understanding of the molecular processes contributing to invasive infection. Improved understanding of the molecular mechanisms underlying the pathogenesis of GAS pharyngeal, invasive and other infections holds the promise of assisting with the development of novel preventive or therapeutic agents for this prevalent human pathogen.  相似文献   

17.
Campylobacter jejuni is a microaerophilic bacterium that causes diarrhea in humans. The first step in establishing an infection is adherence to a host cell, which involves two major cell-binding proteins, Peb1A (CBF1) and Peb4 (CBF2). Because the functional role of Peb4 on the cell adhesion remains unclear compared with that of Peb1A, a C. jejuni peb4 deletion mutant was constructed and cell adherence and ability to colonize mouse intestine were studied. The result showed that adherence of the peb4 mutant strain to INT407 cells was 1-2% that of the wild-type strain. Mouse challenge experiments showed a reduced level and duration of intestinal colonization by the mutant compared with the wild-type strain. In addition, fewer peb4 mutant cells than wild-type cells responded to stress by forming a biofilm. Proteomic analysis revealed that the expression levels of proteins involved in various adhesion, transport, and motility functions, which are required for biofilm formation by the pathogen, were lower in the peb4 mutant than in the wild-type strain. A Peb4 homolog has prolyl cis/trans-isomerase activity, suggesting that the loss of this activity in the mutant strain may be responsible for the repression of these proteins.  相似文献   

18.
We have characterized a novel surface protein from urea extract of whole cells of group A Streptococcus pyogenes (GAS). A major protein band (35kD) was found to hybridize with human IgG by Western blotting. A search of the N-terminal amino acid sequence of this protein by using the GAS genome sequence database revealed an open reading frame that encoded a 38-kDa protein with a signal peptide sequence. We have named this protein streptococcal immunoglobulin-binding protein 35 (Sib35). It was found to be an anchorless protein with no LPXTG motif, distinct from the M protein superfamily exhibiting immunoglobulin-binding activity, and partially secreted in the culture supernatant. Recombinant Sib35 was also shown to bind human IgA and IgM. The sib35 gene was found in all GAS strains examined, but not in oral, group B, C, or G streptococcal strains. These results suggest that Sib35 is a unique immunoglobulin-binding protein in GAS.  相似文献   

19.
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.  相似文献   

20.
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号