首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-mannosidase from Erythrina indica seeds is a Zn2+ dependent glycoprotein with 8.6% carbohydrate. The enzyme has a temperature optimum of 50 °C and energy of activation calculated from Arrhenius plot was found to be 23 kJ mol− 1. N-terminal sequence up to five amino acid residues was found to be DTQEN (Asp, Thr, Gln, Glu, and Asn). In chemical modification studies treatment of the enzyme with NBS led to total loss of enzyme activity and modification of a single tryptophan residue led to inactivation. Fluorescence studies over a pH range of 3–8 have shown tryptophan residue to be in highly hydrophobic environment and pH change did not bring about any appreciable change in its environment. Far-UV CD spectrum indicated predominance of α-helical structure in the enzyme. α-Mannosidase from E indica exhibits immunological identity with α-mannosidase from Canavalia ensiformis but not with the same enzyme from Glycine max and Cicer arietinum. Incubation of E. indica seed lectin with α-mannosidase resulted in 35% increase in its activity, while no such activation was observed for acid phosphatase from E. indica. Lectin induced activation of α-mannosidase could be completely abolished in presence of lactose, a sugar specific for lectin.  相似文献   

2.
A lectin was isolated from the saline extract of Erythrina speciosa seeds by affinity chromatography on lactose-Sepharose. The lectin content was about 265 mg/100g dry flour. E. speciosa seed lectin (EspecL) agglutinated all human RBC types, showing no human blood group specificity; however a slight preference toward the O blood group was evident. The lectin also agglutinated rabbit, sheep, and mouse blood cells and showed no effect on horse erythrocytes. Lactose was the most potent inhibitor of EspecL hemagglutinating activity (minimal inhibitory concentration (MIC)=0.25 mM) followed by N-acetyllactosamine, MIC=0.5mM, and then p-nitrophenyl alpha-galactopyranoside, MIC=2 mM. The lectin was a glycoprotein with a neutral carbohydrate content of 5.5% and had two pI values of 5.8 and 6.1 and E(1%)(1 cm) of 14.5. The native molecular mass of the lectin detected by hydrodynamic light scattering was 58 kDa and when examined by mass spectroscopy and SDS-PAGE it was found to be composed of two identical subunits of molecular mass of 27.6 kDa. The amino acid composition of the lectin revealed that it was rich in acidic and hydroxyl amino acids, contained a lesser amount of methionine, and totally lacked cysteine. The N-terminal of the lectin shared major similarities with other reported Erythrina lectins. The lectin was a metaloprotein that needed both Ca(2+) and Mn(2+) ions for its activity. Removal of these metals by EDTA rendered the lectin inactive whereas their addition restored the activity. EspecL was acidic pH sensitive and totally lost its activity when incubated with all pH values between pH 3 and pH 6. Above pH 6 and to pH 9.6 there was no effect on the lectin activity. At 65 degrees C for more than 90 min the lectin was fairly stable; however, when heated at 70 degrees C for 10 min it lost more than 80% of its original activity and was totally inactivated at 80 degrees C for less than 10 min. Fluorescence studies of EspecL indicated that tryptophan residues were present in a highly hydrophobic environment, and binding of lactose to EspecL neither quenched tryptophan fluorescence nor altered lambda(max) position. Treating purified EspecL with NBS an affinity-modifying reagent specific for tryptophan totally inactivated the lectin with total modification of three tryptophan residues. Of these residues only the third modified residue seemed to play a crucial role in the lectin activity. Addition of lactose to the assay medium did not provide protection against NBS modification which indicated that tryptophan might not be directly involved in the binding of haptenic sugar D-galactose. Modification of tyrosine with N-acetylimidazole led to a 50% drop in EspecL activity with concomitant acetylation of six tyrosine residues. The secondary structure of EspecL as studied by circular dichroism was found to be a typical beta-pleated-sheet structure which is comparable to the CD structure of Erythrina corallodendron lectin. Binding of lactose did not alter the EspecL secondary structure as revealed by CD examination.  相似文献   

3.
Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.  相似文献   

4.
Reaction of alpha-mannosidase (alpha-D-mannoside mannohydrolase, EC 3.2.1.24) from Phaseolus vulgaris with N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide- resulted in loss of enzyme activity. Spectral absorption and fluorescence studies, as well as amino acid analysis, suggested that only tryptophan residues had been modified. No change in conformation could be detected by density gradient ultracentrifugation or circular dichroism of alpha-mannosidase modified by N-bromosuccinimide to virtually zero enzyme activity. The inhibition was partly offset by the substrate analogue alpha-methyl-D-mannoside and the competitive inhibitor mannono-1,4-lactone. Concomitantly, two tryptophan residues fewer were oxidized per molecule. After modification V was reduced, while Km seemed unchanged. Further, there was found evidence for the enzyme having a secondary structure dominated by beta-pleated sheets.  相似文献   

5.
The inactivation of 3-HBA-6-hydroxylase isolated from Micrococcus species by phenylglyoxal and protection offered by 3-HBA against inactivation indicate the presence of arginine residue at or near the substrate binding site. The loss of enzyme activity was time and concentration dependent and displayed pseudo-first order kinetics. A 'n' value of 0.9 was obtained thus suggesting the modification of a single arginine residue per active site which led to the loss of enzyme activity. The enzyme activity could be restored by extensive dialysis at neutral pH. Quenching of the intrinsic fluorescence and reduction in the ellipticity value at 280 nm in the near-UV CD spectrum of the enzyme was noticed after its treatment with phenylglyoxal. These observations probably imply distinct perturbations in the environment of adjacent aromatic amino acid residues such as tryptophan as a consequence of arginine modification.  相似文献   

6.
The effect of chemical modification on a galactose-specific lectin isolated from a fatty acid auxotroph of Saccharomyces cerevisiae was investigated in order to identify the type of amino acids involved in its agglutinating activity. Modification of 50 free amino groups with succinic anhydride or citraconic anhydride led to an almost complete loss of activity. This could not be protected by the inhibitory sugar methyl alpha-D-galactopyranoside. Treatment with N-bromosuccinimide and N-acetylimidazole, for the modification of tryptophan and tyrosine residues, did not affect lectin activity. Modification of carboxy groups with glycine ethyl ester greatly affected lectin activity, although sugars afford partial protection. Modification of four thiol groups with N-ethylmaleimide was accompanied by a loss of 85% of the agglutinating activity, and two thiol groups were found to be present at the sugar-binding site of the lectin. Modification of 18 arginine residues with cyclohexane-1,2-dione and 26 histidine residues with ethoxyformic anhydride led to a loss of lectin activity. However, in these cases, modification was not protected by the abovementioned inhibitory sugar, suggesting the absence of these groups at the sugar-binding site. In all the cases, immunodiffusion studies with modified lectin showed no gross structural changes which could disrupt antigenic sites of the lectin.  相似文献   

7.
Chemical modification of tryptophan residues in ricin E was investigated with regard to saccharide-binding. Two out of ten tryptophan residues in ricin E were modified with N- bromosuccinimide at pH 4.5 in the absence of specific saccharide accompanied by a marked decrease in the cytoagglutinating activity. Such a loss of the cytoagglutinating activity was found to be principally due to the oxidation of one tryptophan residue per B-chain. In the presence of lactose, one tryptophan residue/mol was protected from the modification with retention of a fairly high cytoagglutinating activity. However, G a IN Ac did not show such a protective effect. The binding of lactose to ricin E altered the environment of the tryptophan residue at the low affinity binding site of ricin E, leading to a blue shift of the fluorescence spectrum and an UV-difference spectrum with a maximum at 290 nm and a trough at 300 nm. The ability to generate such spectroscopic changes induced by lactose was retained in the derivative in which one tryptophan residue/mol was oxidized in the presence of lactose, but not in the derivative in which two tryptophan residues/mol were oxidized in the absence of lactose. Based on these results, it is suggested that one of the two surface-localized tryptophan residues is responsible for saccharide binding at the low affinity binding site of ricin E, which can bind lactose but lacks the ability to bind GalNAc.  相似文献   

8.
The effect of chemical modification on a D(+)-galactose-specific lectin isolated from winged-bean tubers was investigated to identify the type of amino acid involved in its haemagglutinating activity. Various anhydrides of dicarboxylic acids, such as acetic anhydride, succinic anhydride, maleic anhydride and citraconic anhydride, modified 57-68% of the amino groups of the winged-bean tuber lectin. Treatment with N-acetylimidazole modified only 45% of the total amino groups. Reductive methylation of free amino groups modified 57% of the amino groups. Modification of the amino groups of the lectin by acetic anhydride and succinic anhydride did not lead to any significant change in the haemagglutinating activity (greater than or equal to 75% active). However, citraconylation and maleylation of the lectin led to a significant decrease in the haemagglutinating activity (less than or equal to 20% active). Acetylation and succinylation (3-carboxypropionylation) of the lectin led to a decrease in the pI value of the native lectin from approx. 9.5 to approx. 4.5. Treatment of the lectin with N-bromosuccinimide led to the modification of two and four tryptophan residues per molecule in the absence and in the presence of 8 M-urea respectively. The immunological identity of all the modified lectin preparations showed no gross structural changes except the lectin modified with N-bromosuccinimide in the presence of urea at pH 4.0.  相似文献   

9.
《Phytochemistry》1987,26(3):633-636
The effect of chemical modification of histidine, lysine, arginine, tryptophan and methionine residues on the enzymatic activity of calotropin DI has been studied. 1,3-Dibromoacetone inhibited the enzyme completely, indicating that a single histidine residue and a cysteine residue are involved in its catalytic activity. Its second bistidine residue was modified with diethyl pyrocarbonate without loss of activity. Modification of seven of its 13 lysine residues with 2,4,6-trinitrobenzene sulphonic acid led to 90% loss of its activity, but no single lysine residue appears to be essential for its activity. Four of the 12 arginine residues by 1,2-cyclohexanedione can be modified with little loss of activity. Modification of a single tryptophan residue and two methionine residues did not inhibit enzymatic activity. The blocked amino-terminal amino acid residue of calotropin DI has been identified as pyroglutamic acid. Its amino-terminal amino acid sequence to residue 14 has been determined and compared with that of papain. They show an extensive homology in their amino-terminal amino acid sequences.  相似文献   

10.
Chemical modification of carboxypeptidase Ag1 from goat pancreas with phenylglyoxal or ninhydrin led to a loss of enzymatic activity. The inactivation by phenylglyoxal in 200 mM N-ethylmorpholine, 200 mM sodium chloride buffer, pH 8.0, or in 300 mM borate buffer, pH 8.0, followed pseudo-first-order kinetics at all concentrations of the modifier. The reaction order with respect to phenylglyoxal was 1.68 and 0.81 in 200 mM N-ethylmorpholine, 200 mM NaCl buffer and 300 mM borate buffer, pH 8.0, respectively, indicating modification of single arginine residue per mole of enzyme. The kinetic data were supported by amino acid analysis of modified enzyme, which also showed the modification of single arginine residue per mole of the enzyme. The modified enzyme had an absorption maximum at 250 nm, and quantification of the increase in absorbance showed modification of single arginine residue. Modification of arginine residue was protected by beta-phenylpropionic acid, thus suggesting involvement of an arginine residue at or near the active site of the enzyme.  相似文献   

11.
In a broad sense, lectins are proteins or glycoproteins ofnon-immune origin that bind specifically to carbohydrates[1]. But most lectins are usually multivalent, which meansthey have more than one carbohydrate-binding site in onemolecule, a property that enables them to agglutinate eryth-rocytes and other cells [2,3]. Some lectins exhibit blood-group specificity [4] and can be used in blood grouping;some agglutinate transformed cells better than the normalones [5]. Therefore, clinical research…  相似文献   

12.
The chemical modification of lysozyme (I) has been accomplished with alpha, alpha'-dibromo-p-xylenesulfonic acid (DBX) at five different pH values. I was alkylated by DBX at room temperature (28 degrees C) with decrease in enzyme activity. The rate of inactivation depended upon the pH at which alkylation was carried out. The highest rate was seen at alkaline pH values; the lowest at more acidic pH values. Amino acid analyses showed that-two lysines and two tryptophan residues had been modified at pH 9; two lysines, one tryptophan and one methionine had reacted at pH 8. A histidine residue was bound at pH 6.5 together with a tryptophan residue. At the lower pH values (2.7, 4.5, 6.5), alkylation occurred with a single tryptophan residue each. Fluorescence and CD data both ruled out the participation of tryptophans 62 or 108. Labeling experiments showed that two residues of DBX-35S were bound per molecule of I at both pH9 and pH8; one residue of DBX was bound per molecule of I at the other pH values. Sedimentation coefficients were characteristic of native lysozyme. The stoichiometry of binding and residue modification indicated that intra-molecular cross links were established. The pH dependence of the cross-linking provides means to measure several allowed intra-molecular distances. The results presented here are consistent with the existence of side chain motion in lysozyme.  相似文献   

13.
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.  相似文献   

14.
The effect of N-bromosuccinimide (NBS) on the activity of the inorganic pyrophosphatase (PPiase) from thermophilic bacterium PS-3 was studied. The enzyme was almost completely inactivated on chemical modification with NBS, depending upon the concentration of NBS. The presence of a complex of Mg2+ and a substrate analogue, imidodiphosphate (PNP), provided extensive protection against the inactivation, whereas Mg2+ or PNP alone showed no protective effect. Amino acid analysis of the NBS-modified enzyme after hydrolysis with 6 M HCl indicated no change in the amino acid composition. However, the magnetic circular dichroism (MCD) bands around 293 nm due to the tryptophan residue and the optical density at 280 nm, decreased concomitantly with modification by NBS. These results strongly suggested that the tryptophan residue at position 143, which is the only tryptophan residue per subunit in the thermophilic PPiase (Ichiba, T., Takenaka, O., Samejima, T. and Hachimori, A. (1990) J. Biochem. 108, 572-578), might be involved in the active site or be located in the vicinity of the active site. The circular dichroism (CD) spectrum in the far ultraviolet region showed no significant alteration during the modification, indicating that the polypeptide chain backbone of the enzyme remained unaltered. However, the modification considerably altered the CD bands in, the near ultraviolet region, indicating that a conformational change occurred in the vicinity of the active site in the enzyme molecule.  相似文献   

15.
Chemical modification of tryptophan residues in abrin-a with N-bromosuccinimide (NBS) was studied with regard to saccharide-binding. The number of tryptophan residues available for NBS oxidation increased with lowering pH, and 11 out of the 13 tryptophan residues in abrin-a were eventually modified with NBS at pH 4.0, while 6 tryptophan residues were modified at pH 6.0 in the absence of specific saccharides. Modification of tryptophan residues at pH 6.0 greatly decreased the saccharide-binding ability of abrin-a, and only 2% of the hemagglutinating activity was retained after modification of 3 residues/mol. When the modification was done in the presence of lactose or galactose, 1 out of 3 residues/mol remained unmodified with a retention of a fairly high hemagglutinating activity. However, GalNAc did not show such a protective effect. NBS-oxidation led to a great loss of the fluorescence of abrin-a, and after modification of 3 tryptophan residues/mol, the fluorescence intensity at 345 nm was only 38% of that of the unmodified abrin-a. The binding of lactose to abrin-a altered the environment of the tryptophan residue at the saccharide-binding site of abrin-a, leading to a blue shift of the fluorescence spectrum. The ability to generate such fluorescence spectroscopic changes induced by lactose-binding was retained in the derivative in which 2 tryptophan residues/mol were oxidized in the presence of lactose, but not in the derivative in which 3 tryptophan residues/mol were oxidized in the absence of lactose. Importance of the tryptophan residue(s) in the saccharide-binding of abrin-a is suggested.  相似文献   

16.
The nature of the saccharide-binding site of ricin D, which is a galactose- and N-acetylgalactosamine-specific lectin, was studied by chemical modification and spectroscopy. With excitation at 290 nm, ricin D displayed a fluorescence spectrum with a maximum at 335 nm. Upon binding of the specific saccharides, the spectrum shifted to shorter wavelength by 3 nm. However, binding of galactosamine and N-acetylgalactosamine failed to induce such a change in the fluorescence spectrum. The interaction of ricin D with its specific saccharides was analyzed in terms of the variation of the intensity at 320 nm as a function of saccharide concentration. The results indicate that the change in the fluorescence spectrum induced by saccharide binding is attributable to the binding of saccharide to the low-affinity (LA-) binding site of ricin D. The cytoagglutinating activity of ricin D decreased to 2% upon modification of two tryptophan residues/mol with N-bromosuccinimide at pH 4.0, but in the presence of galactose or lactose one tryptophan residue/mol remained unmodified, and a fairly high cytoagglutinating activity was retained. Galactosamine and N-acetylgalactosamine did not show such a protective effect. Spectroscopic analyses indicate that the decrease in the cytoagglutinating activity of ricin D upon tryptophan modification is principally due to the loss of the saccharide binding activity of the LA-binding site. The results suggest that one tryptophan residue is essential for saccharide binding at the LA-binding site, which can bind galactose and lactose but lacks the ability to bind N-acetylgalactosamine and galactosamine.  相似文献   

17.
MaltodExtrin (high-d.p. malto-oligosaccharides) was found to produce a trough at 303 nm in the difference spectrum of glucoamylase (E.C. 3.2.1.3) from Rhizopus niveus upon binding with the enzyme; this trough disappears upon hydrolysis. The trough, which was ascribed to a change, in the electrostatic environment of a tryptophan residue at the terminal subsite of the enzyme, was found closely related to the formation of the enzyme-substrate complex. The kinetics of binding of maltodextrin and maltotriose to the enzyme were studied at pH 4.5. and 5°, by monitoring the trough by the stopped-flow method. The result was consistent with a two-step mechanism, in which a fast, bimolecular association is followed by a slower, uni-molecular isomerization-process. The latter process involves an environmental change of the tryptophan residue, and is considered to be closely connected to the formation of the productive complex essential for the catalysis.  相似文献   

18.
The acidic phospholipase A2 isoform from the spitting cobra Naja mossambica mossambica is activated irreversibly by treatment with a molar equivalent of oleoyl imidazolide. The kinetics of the chemical modification of the enzyme can also be monitored by measuring the large reduction of tryptophan fluorescence, which is accompanied by a distinct red shift. The addition of a single molar equivalent of oleic acid to the enzyme produces an instantaneous reduction in fluorescence but with a barely detectable red shift, confirming that the response to oleoyl imidazolide results from covalent modification of the protein rather than hydrolysis of the reagent. The pH dependence of both activation and fluorescence reduction by oleoyl imidazolide has an optimum rate near pH 8.0. We propose that long-chain fatty acids and long-chain acyl imidazolides bind at a single activation site and that the reaction of the imidazolides involves two protein residues, one of which is a nonessential histidine residue and the other a primary amino group.  相似文献   

19.
Chemical modifications of rye seed chitinase-c (RSC-c) with various reagents suggested the involvements of tryptophan and glutamic/aspartic acid residues in the activity. Of these, the modification of tryptophan residues with N-bromosuccinimide (NBS) was investigated in detail.

In the NBS-oxidation at pH 4.0, two of the six tryptophan residues in RSC-c were rapidly oxidized and the chitinase activity was almost completely lost. On the other hand, in the NBS-oxidation at pH 5.9, only one tryptophan residue was oxidized and the activity was greatly reduced. Analyses of the oxidized tryptophan-containing peptides from the tryptic and chymotryptic digests of the modified RSC-c showed that two tryptophan residues oxidized at pH 4.0 are Trp72 and Trp82, and that oxidized at pH 5.9 is Trp72.

The NBS-oxidation of Trp72 at pH 5.9 was protected by a tetramer of N-acetylglucosamine (NAG4), a very slowly reactive substrate for RSC-c, and the activity was almost fully retained. In the presence of NAG4, RSC-c exhibited an UV -difference spectrum with maxima at 284 nm and 293 nm, attributed to the red shift of the tryptophan residue, as well as a small trough around 300 nm probably due to an alteration of the environment of the tryptophan residue. From these results, it was suggested that Trp72 is exposed on the surface of the RSC-c molecule and involved in the binding to substrate.  相似文献   

20.
大黑花芸豆(Phaseolus multiflorus.Wiud)种子经匀浆、浸取、硫酸铵分级沉淀、阴离子交换层析(DEAE-Sepharose)、阳离子交换层析(CM-Sepharose)和Sepllacryl S-200分子筛层析得到凝集素样品(PML).经SDS-PAGE检测为一分子量约为28k的单一条带,Sephacryl S-100凝胶过滤测得其表观分子量约为56 kD表明PML是由两个相同亚基组成的蛋白.温度低于60℃时,PML较为稳定,当温度达80℃时,其凝血活性完全丧失;pH为5.6~9对活性影响不大,pH为12时,活性大部分丧失;高温和强碱对荧光光谱有较大影响.NBS修饰Trp结果表明,在天然状态下有3个色氨酸分子被修饰,其中第二和第三个色氨酸分子对其活性至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号