首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background-

Hypoxia during the first week of life can induce neuronal death in vulnerable brain regions usually associated with an impairment of cognitive function that can be detected later in life. The neurobiological changes mediated through neurotransmitters and other signaling molecules associated with neonatal hypoxia are an important aspect in establishing a proper neonatal care.

Methods-

The present study evaluated total GABA, GABAB receptor alterations, gene expression changes in GABAB receptor and glutamate decarboxylase in the cerebellum and brain stem of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen and epinephrine. Radiolabelled GABA and baclofen were used for receptor studies of GABA and GABAB receptors respectively and Real Time PCR analysis using specific probes for GABAB receptor and GAD mRNA was done for gene expression studies.

Results-

The adaptive response of the body to hypoxic stress resulted in a reduction in total GABA and GABAB receptors along with decreased GABAB receptor and GAD gene expression in the cerebellum and brain stem. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations.

Conclusions-

Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. The present study suggests that reduction in the GABAB receptors functional regulation during hypoxia plays an important role in central nervous system damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.  相似文献   

2.
One of the many pharmacological targets of ethanol is the GABA inhibitory system, and chronic ethanol (CE) is known to alter the polypeptide levels of the GABAA receptor subunits in rat brain regions. In the present study, we investigated the regulation of the tyrosine kinase phosphorylation of the GABAA receptor α1-, β2- and γ2-subunits in the rat cerebellum, cerebral cortex and hippocampus following chronic administration of ethanol to the rats. We observed either down-regulation or no change in the tyrosine kinase phosphorylation of the α1 subunit, whereas there was an up-regulation or no change in the case of β2- and γ2-subunits of the GABAA receptors depending on the brain region following chronic administration of ethanol to the rats. These changes reverted back to the control level following 48 h of ethanol-withdrawal. These results suggest that tyrosine kinase phosphorylation of GABAA receptors may play a significant role in ethanol dependence.  相似文献   

3.
Hypoxia in neonates causes dysfunction of excitatory and inhibitory neurotransmission resulting in permanent brain damage. The present study is to understand the cerebellar GABA(A) receptor alterations and neuroprotective effect of glucose supplementation prior to current sequence of resuscitation - oxygen and epinephrine supplementation in hypoxic neonatal rats. Hypoxic insult caused a significant decrease in GABA(A) receptor number along with down regulated expression of GABA(Aα1,) GABA(Aα5), GABA(Aδ) and GABA(Aγ3) receptor subunits in the cerebellum which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GABA(A) receptor subunits expression to near control. Glucose can reduce ATP-depletion-induced alterations in GABA receptors, thereby assisting in overcoming the neuronal damage caused by hypoxia. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. The reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in cerebellar damage. Resuscitation with glucose alone and glucose with oxygenation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.  相似文献   

4.
In the present study, alterations of the General GABA and GABAA receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [3H]GABA and [3H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABAA receptor sub-units such as GABAAά1, GABAAά5, GABA, and GAD were down regulated (P < 0.001) in the hippocampus of the epileptic rats compared to control. GABA subunit was up regulated. Epileptic rats have deficit in the radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.  相似文献   

5.
Because of its control of spike-timing and oscillatory network activity, γ-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABAA receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing α1GABAA receptors have been found to mediate sedation, whereas those expressing α2GABAA receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic α5GABAA receptors. In addition, neurons expressing α3GABAA receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with α1GABAA receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABAA receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.  相似文献   

6.
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.  相似文献   

7.
[35S]TBPS binding to the GABAA receptor ionophore binding site is anion dependent. Using autoradiography on rat brain sections, we show that permeabilities of anions through the receptor channel correlate with their efficiencies to promote basal [35S]TBPS binding. Phosphate made an exception as it induced more binding than expected from its permeability. Well-permeable anions (chloride, nitrate, formate) allowed [35S]TBPS binding to be effectively displaced by 1 mM GABA, whereas low-permeable anions (acetate, phosphate, propionate) markedly prevented this GABA effect, especially in the thalamus, the transition from the high to the low GABA effect being between formate and acetate. In the presence of phosphate, GABA enhanced [3H]flunitrazepam binding to benzodiazepine site of recombinant α1β2γ2 receptors with the same efficacy but lower potency as compared to the presence of chloride, whereas [35S]TBPS binding was abnormally modulated by GABA. These results suggest that inorganic phosphate affects coupling between agonist and ionophore sites in GABAA receptors. Special issue dedicated to Simo S. Oja  相似文献   

8.
Subunit-specific antibodies to all the γ subunit isoforms described in mammalian brain (γ1, γ2S, γL, and γ3) have been made. The proportion of GABAA receptors containing each γ subunit isoform in various brain regions has been determined by quantitative immunoprecipitation. In all tested regions of the rat brain, the γ1, and γ3 subunits are present in considerable smaller proportion of GABAA receptor than the γ2 subunit. Immunocytochemistry shows that γ1 immunoreactivity concentrates in the stratum oriens and stratum radiatum of the CA1 region of the hippocampus. In the dentate gyrus, γ1 immunoreactivity concentrates on the outer 2/3 of the molecular layer coinciding with the localization of the axospinous synapses of the perforant pathway. In contrast, γ3 immunoreactivity concentrates on the basket cells and other GABAergic local circuit neurons of the hilus. These cells are also rich in γ2S. In the cerebellu, γ1 immunolabeling was localized on the Bergmann glia. The γ2S and γ2L subunits are differentially expressed in various brain regions. Thus the γ2S is highly expressed in the olfactory bulb and hippocampus whereas the γ2L is very abundant in inferior colliculus and cerebellum, particularly in Purkinje cells, as immunocytochemistry, in situ hybridization and immunoprecipitation techniques have revealed. The γ2S and γ2L coexist in some brain areas and cell types. Moreover, the γ2S and γ2L subunits can coexist in the same GABAA receptor pentamer. We have shown that this is the case in some GABAA receptors expressed in cerebellar granule cells. These GABAA receptors also have α and β subunits forming the pentamer. Immunoblots have shown that the rat γ1, γ2S, γ2L and γ3 subunits are peptides of 47, 45, 47 and 44 kDa respectively. Results also indicate that there are aging-related changes in the expression of the γ2S and γ2L subunits in various brain regions which suggest the existence of aging-related changes in the subunit composition of the GABAA receptors which in turn might lead to changes in receptor pharmacology. The results obtained with the various γ subunit isoforms are discussed in terms of the high molecular and binding heterogeneity of the native GABAA receptors in brain. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

9.
Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels, a process called cross-talk. The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system, respectively. Currently, cross-talk between the NMDA receptor and the GABAA receptor, particularly in the central auditory system, is not well understood. In the present study, we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus, which is an important nucleus in the central auditory system. We found that the currents induced by aspartate at 100 μmol L−1 were suppressed by the pre-perfusion of GABA at 100 μmol L−1, indicating cross-inhibition of NMDA receptors by activation of GABAA receptors. Moreover, we found that the currents induced by GABA at 100 μmol L−1 (I GABA) were not suppressed by the pre-perfusion of 100 μmol L−1 aspartate, but those induced by GABA at 3 μmol L−1 were suppressed, indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors. In addition, inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+, however, CdCl2 effectively attenuated the inhibition of I GABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L−1 BAPTA, a membrane-permeable Ca2+ chelator, suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors, rather than voltage-dependent Ca2+ channels. Finally, KN-62, a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), reduced the inhibition of I GABA by aspartate, indicating the involvement of CaMKII in this cross-inhibition. Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats. The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.  相似文献   

10.
Hypoxia in neonates disrupts the oxygen flow to the brain, essentially starving the brain and preventing it from performing vital biochemical processes important for central nervous system development. Hypoxia results in a permanent brain damage by gene and receptor level alterations mediated through neurotransmitters. The present study evaluated GABA, GABAA, GABAB receptor functions and gene expression changes in glutamate decarboxylase in the corpus striatum of hypoxic neonatal rats and the treatment groups with glucose, oxygen and epinephrine. Since GABA is the principal neurotransmitter involved in hypoxic ventilatory decline, the alterations in its level under hypoxic stress points to an important aspect of respiratory control. Following hypoxic stress, a significant decrease in total GABA, GABAA and GABAB receptors function and GAD expression was observed in the striatum, which accounts for the ventilator decline. Hypoxic rats treated with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation helps in overcoming reduction in oxygen supply. Treatment with oxygen alone and epinephrine was not effective in reversing the altered receptor functions. Thus, our study point to the functional role of GABA receptors in mediating ventilatory response to hypoxia and the neuroprotective role of glucose treatment. This has immense significance in the proper management of neonatal hypoxia for a better intellect in the later stages of life.  相似文献   

11.
Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABAA and GABAC (ionotropic receptors) and GABAB (metabotropic receptor). Here we reviewed the participation of GABAB receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABAB1 knock-out mice, that lack functional GABAB receptors. Our general conclusion indicates that GABAB receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABAB receptor activation, as demonstrated in the rat and also in the GABAB1 knock-out mouse. In addition, hypothalamic and pituitary GABAB receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABAB receptors depends on physiological conditions, being age and sex critical factors. These results indicate that patients receiving GABAB agonists/antagonists should be monitored for possible endocrine side effects.  相似文献   

12.
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.  相似文献   

13.
Cupello A 《Amino acids》2003,24(4):335-346
Summary.  It has long been accepted that GABA is the main inhibitory neurotransmitter in the mammalian brain, acting via GABAA or GABAB receptors. However, new evidences have shown that it may work as an excitatory transmitter, especially in the brain of newly-born animals and acting via GABAA receptors. The difference in the end results of GABAA receptors activation in the two cases is not due to the receptor associated channels, which in both cases are chloride channels. The different physiological effect in the two cases is due to different electrochemical gradients for chloride. When GABA acting via GABAA receptors is inhibitory, either there is no transmembrane electrochemical gradient for chloride or there is one forcing such negative ions into the nerve cell, once chloride channels are open. Viceversa, GABA is excitatory when the electrochemical gradient is such to make chloride ions flow outside the cell, upon opening of the GABA activated chloride channels. In this review this concept is discussed in details and evidence in the scientific literature for the existence of different types of chloride pumps (either internalizing or extruding chloride) is compiled. Received August 5, 2002 Accepted October 30, 2002 Published online March 17, 2003 Acknowledgement The author thanks Dr. Simona Scarrone, Genova, for helping him with the schemes in Fig. 1. Author's address: Dr. Aroldo Cupello, Istituto di Bioimmagini e Fisiologia Molecolare, Via De Toni 5, I-16132 Genova, Italy, Fax: 39-010354180, E-mail: dcupel@neurologia.unige.it  相似文献   

14.
There is evidence that many of the GABAA receptor subunits contain consensus sequence for tyrosine kinase, and phosphorylation may play a key role in ethanol’s regulation of GABAA receptors. Recently, we investigated the effect of chronic exposure of ethanol (CE) on tyrosine kinase phosphorylation and reported that there was an up-regulation in tyrosine kinase phosphorylation of the β2- and γ2- subunits and no effect on α1-subunit of the GABAA receptor in the cultured cortical neurons of mice. In the present study, we have further investigated the effect of chronic intermittent administration of ethanol (CIE) on tyrosine kinase phosphorylation of the GABAA receptor subunits (α1, β2, and γ2) in the mouse cultured cortical neurons by immunoprecipitation and Western blot techniques. We observed that there was an up-regulation in the tyrosine kinase phosphorylation of the GABAA receptor β2- and γ2-subunits following CIE exposure, and no effect on α1-subunit in the cultured cortical neurons of mice. These CIE changes, unlike CE, were not reverted back to the control level following ethanol withdrawal even after 7 days. Acute exposure of ethanol did not cause any change in the tyrosine kinase regulation of the GABAA receptor subunits. In conclusion, the CIE exposure, unlike chronic/acute ethanol exposure, regulates the tyrosine kinase phosphorylation of the selective population of GABAA receptors in a long lasting manner.  相似文献   

15.
GABAC receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABAC receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABAC receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABAC receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABAA and GABAB receptors, GABAC receptors are attractive drug targets.  相似文献   

16.
GABAA receptors composed of α, β and γ subunits display a significantly higher single-channel conductance than receptors comprised of only α and β subunits. The pore of GABAA receptors is lined by the second transmembrane region from each of its five subunits and includes conserved threonines at the 6′, 10′ and 13′ positions. At the 2′ position, however, a polar residue is present in the γ subunit but not the α or β subunits. As residues at the 2′, 6′ and 10′ positions are exposed in the open channel and as such polar channel-lining residues may interact with permeant ions by substituting for water interactions, we compared both the single-channel conductance and the kinetic properties of wild-type α1β1 and α1β1γ2S receptors with two mutant receptors, αβγ(S2′A) and αβγ(S2′V). We found that the single-channel conductance of both mutant αβγ receptors was significantly decreased with respect to wild-type αβγ, with the presence of the larger valine side chain having the greatest effect. However, the conductance of the mutant αβγ receptors remained larger than wild-type αβ channels. This reduction in the conductance of mutant αβγ receptors was observed at depolarized potentials only (ECl = −1.8 mV), which revealed an asymmetry in the ion conduction pathway mediated by the γ2′ residue. The substitutions at the γ2′ serine residue also altered the gating properties of the channel in addition to the effects on the conductance with the open probability of the mutant channels being decreased while the mean open time increased. The data presented in this study show that residues at the 2′ position in M2 of the γ subunit affects both single-channel conductance and receptor kinetics.  相似文献   

17.
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABAA-receptor and GABAC-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABAA-, and GABAC-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the α1 subunit of the glycine-receptor, the γ2 subunit of the GABAA-receptor, and the ρ subunits of the GABAC-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABAA- or GABAC-receptors and the colocalization of GABAA- and GABAC-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABAA- and GABAC-receptors were colocalized in 10%–15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABAA- and GABAC-receptor subunits. Our results suggest that GABAA- and GABAC-receptors are colocalized in a minority of synapses of the central nervous system.  相似文献   

18.
The flunitrazepam sensitive-GABAA receptor density was increased by cytochalasins C and D at 37°C suggesting that microfilament depolymerization induces exposure to the radioligand of a GABAA receptor in synaptosomes (Pharm Biochem Behav 72 (2002) 497). Similarly, phosphatidylinositol-4,5-bisphosphate (1–5 μM), but not a mixture of phospholipids, induced an increase of GABAA receptors in synaptosomes. Furthermore, N-ethyl maleimide, an inactivator of the sensitive fusion protein, which interacts with GABAA receptor, abolished the receptor increase induced by phosphatidylinositol-4,5-bisphosphate. Together, the results suggest that phosphatidylinositol-4,5-bisphosphate, acts via microfilament depolymerization increasing the binding of the radioligand to receptors possibly by modulation of their interaction with proteins involved in trafficking and docking mechanisms.  相似文献   

19.
Dopamine modulates voltage- and ligand-gated currents in striatal medium-sized neurons (MSNs) through the activation of D1- and D2-like family receptors. GABAA receptor-mediated currents are reduced by D1 receptor agonists, but the relative contribution of D1 or D5 receptors in this attenuation has been elusive due to the lack of selective pharmacological agents. Here we examined GABAA receptor-mediated currents and the effects of D1 agonists on MSNs from wildtype and D1 or D5 receptor knockout (KO) mice. Immunohistochemical and single-cell RT-PCR studies demonstrated a lack of compensatory effects after genetic deletion of D1 or D5 receptors. However, the expression of GABAA receptor α1 subunits was reduced in D5 KO mice. At the functional level, whole-cell patch clamp recordings in dissociated MSNs showed that GABA peak current amplitudes were smaller in cells from D5 KO mice indicating that lack of this receptor subtype directly affected GABAA-mediated currents. In striatal slices, addition of a D1 agonist reduced GABA currents significantly more in D5 KO compared to D1 KO mice. We conclude that D1 receptors are the main D1-like receptor subtype involved in the modulation of GABA currents and that D5 receptors contribute to the normal expression of these currents in the striatum. Special issue dedicated to Anthony Campagnoni.  相似文献   

20.
The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号