首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
邱权  李吉跃  王军辉  王宁  孙奎  何茜  苏艳  潘昕 《生态学报》2014,34(24):7411-7420
西宁南山区植被退化情况严重,人工造林植被恢复被看作是最有效的恢复手段,其中选择合适造林树种尤为关键。选择人工种植的唐古特白刺Nitraria tangutorum、柠条Caragana korshinskii、西北小蘗Berberis vernae和短叶锦鸡儿Caragana brevifolia共4种灌木树种造林试验区为研究对象,通过测定根际和非根际土壤微生物数量、酶活性及养分含量,综合比较种植4种灌木树种根际和非根际土壤肥力差异,科学评价其对土壤的改善效果。研究表明:(1)土壤微生物数量和酶活性总体呈现出根际高于非根际的规律,仅放线菌数量和脲酶活性出现了根际低于非根际现象。(2)土壤养分方面,4种灌木根际土壤和非根际土壤p H值、全N、全P、全K含量差异不显著,有机质、有效P、速效K含量均呈现出根际非根际,而碱解N则是根际非根际。(3)土壤酶活性与土壤微生物数量相关性不显著,土壤有机质含量与土壤细菌、真菌数量呈极显著正相关,有效P含量与土壤细菌、真菌和放线菌数量呈极显著正相关,速效K含量与过氧化氢酶、酸性磷酸酶活性呈显著正相关,全N、碱解N含量均与脲酶活性呈显著正相关。(4)从土壤肥力综合水平来看,根际非根际,其中根际土壤中西北小蘗柠条短叶锦鸡儿唐古特白刺,研究结果表明西北小蘗和柠条能大幅提高土壤肥力,改良土壤效果较好。  相似文献   

2.
套作棉根际与非根际土壤酶活性和养分的变化   总被引:18,自引:4,他引:18  
在棉麦两熟双高产条件下研究了棉花根际与非根际土壤酶活性和养分含量的变化.结果表明,套作棉土壤脲酶、蔗糖酶、蛋白酶及过氧化氢酶活性随生育进程的变化趋势与单作棉表现一致,但整个生育期套作棉根际与非根际土壤各种酶活性均明显高于单作棉.套作棉根际与非根际土壤养分含量在麦棉共生期低于单作棉或差异较小,而在麦收后则显著高于单作棉.套作棉土壤养分含量随生育进程的变化趋势与单作棉大体相同,但一些养分的吸收高峰晚于单作棉.无论套作棉还是单作棉,根际土壤酶活性和养分含量高于非根际.土壤各养分含量与土壤脲酶、蔗糖酶和蛋白酶活性呈显著(P=0.0,n=32)或极显著(P=0.01,n=32)相关,与土壤过氧化氢酶活性相关不显著.  相似文献   

3.
4.
玉米和大豆根际土壤性质的动态变化   总被引:12,自引:0,他引:12       下载免费PDF全文
 采用根垫模拟装置制备根际土壤,并改变根垫与土壤接触时间以研究植物生长不同时期根际土壤性质的动态变化。研究结果表明,植物生长不同时期根际土壤性质变化有明显差异:植物生长前期,根际土壤水溶性有机碳(DOC)含量急剧增加,20 d后逐渐下降;pH值也是先升后降,但最高值出现在40~60 d前后。在研究的100 d内,氧化还原电位(Eh)始终呈下降趋势,而微生物量则持续上升。玉米(Zea mays L.)和大豆(Glycine max Merr.)根际土壤性质变化趋势基本一致,但玉米根际土壤变化幅度显著高于大豆  相似文献   

5.
[目的] 不同植物对外来入侵植物的抵御能力不同,研究不同植物对入侵植物根际土壤生态的影响可为筛选入侵植物的竞争替代植物提供科学依据。[方法] 利用同质园试验,以入侵植物黄顶菊为研究对象,设置黄顶菊单种、黄顶菊与不同植物(地肤、苘麻、苏丹草、反枝苋)混种处理,采用磷脂脂肪酸分析方法来研究不同植物对黄顶菊根际土壤微生物群落结构的影响,并结合土壤养分的变化探究不同植物对黄顶菊根际土壤生态的影响。[结果] 与黄顶菊单种相比,地肤和苘麻降低了黄顶菊根际微生物的总含量,改变了黄顶菊根际微生物群落结构。地肤、苘麻能竞争性抑制黄顶菊对铵态氮的吸收,从而抑制黄顶菊的生长。[结论] 不同植物的抵御能力与其土壤生态有关,替代植物通过改变黄顶菊根际土壤微生物,抑制黄顶菊对氮的吸收,从而抑制黄顶菊的生长,实现对黄顶菊的替代控制。  相似文献   

6.
不同土壤类型和肥力玉米地土壤养分根际效应研究   总被引:7,自引:3,他引:7  
采集吉林省玉米植株及土壤样品,研究不同土壤类型和肥力,玉米不同品种和生育时期土壤-植物系统根际养分动态变化及植物吸收的相互关系,结果表明,玉米地土壤NH^+4-N、NO^-3-N在根际富集,其变化主要与化肥供应有关,高肥力土壤根际有效磷亏缺,种植密度越大,根际亏缺率超大;低肥力土壤则有效磷在根际略高。高肥力土壤有效钾较高,根际有效钾富集也更明显,茎叶、根对养分的吸收量顺序为:N  相似文献   

7.
本研究通过对6种土壤总DNA提取方法(CTAB-SDS-冻融法、玻璃珠-SDS-酚氯仿抽提法、玻璃珠-聚乙烯聚吡咯烷酮-SDS法、玻璃珠-聚乙烯聚吡咯烷酮-溶菌酶法、玻璃珠-聚乙烯聚吡咯烷酮-冻融法和UltraClean试剂盒法)和4种纯化方法(改进琼脂糖凝胶电泳法、2%聚乙烯吡咯烷酮-琼脂糖凝胶电泳法、PVPP层析柱法和低熔点琼脂糖电泳法)的比较,证明利用20 mmol/L EDTA(pH 7.5)预处理土壤后,利用CTAB-SDS-冻融法提取土壤总DNA并经改进琼脂糖凝胶电泳法纯化获得的浙贝母根际土壤总DNA的得率和纯度相对较高,达44.00 μg/g±2.65 μg/g土壤,可用于后续基于16S rDNA分析基础上的土壤微生物分子生态学的分析工作.  相似文献   

8.
根际微型土壤动物——原生动物和线虫的生态功能   总被引:13,自引:1,他引:12  
从养分释放、土壤有机碳积累和稳定、根系激素效应、微生物多样性和功能稳定性、地上部多营养级关系及污染土壤生物修复概述了根际微型土壤动物(原生动物和线虫)对根际生态功能的影响,特别针对微型土壤动物与微生物和根系的相互作用探讨了可能的机制。微型土壤动物的选择取食、主动迁移和代谢分泌行为,不仅贡献根际生态功能,而且对土壤整体及地上部群落有强烈的影响。总之,不考虑根际微型土壤动物与微生物和根系的相互作用,就不可能对根际生态功能和调控机制有全面的认识。  相似文献   

9.
艾比湖湿地芦苇根际土壤氨氧化古菌的多样性和群落结构   总被引:1,自引:0,他引:1  
【目的】旨在揭示耐盐植物芦苇根际与非根际土壤AOA群落结构间的差异,为深入研究盐生植物根际土壤微生物与耐盐性之间的关系提供理论基础。【方法】应用高通量测序技术以氨单加氧酶基因(amoA)为分子标记,对新疆艾比湖湿地荒漠生态系统不同季节(春、夏、秋)芦苇根际与非根际土壤氨氧化古菌(AOA)的多样性和群落结构进行研究。【结果】结果表明,不同季节芦苇根际土壤AOA多样性和丰富度存在差异,相比非根际土壤,夏季和秋季芦苇根际土壤AOA多样性较低丰富度较高,春季多样性较高丰富度较低。芦苇根际土壤中AOA的多样性为春季夏季秋季。AOA群落组成分析表明,土壤样品中AOA群落主要集中在泉古菌门(Crenarchaeota)和奇古菌门(Thaumarchaeota),其中泉古菌门为主要优势菌门。RDA分析表明,含水量(SM)、有机质(SOM)、总氮(TN)和pH是影响芦苇根际土壤AOA群落多样性和丰富度的主要环境因子。【结论】不同季节芦苇根际土壤AOA多样性及丰富度存在差异,相比非根际土壤,芦苇根际土壤AOA更丰富。  相似文献   

10.
麦棉套作棉花根际非根际土壤微生物和土壤养分   总被引:3,自引:0,他引:3  
在麦棉套作栽培模式下,设置不隔根、纱网隔根和塑膜隔根3种麦棉套种方式,研究麦棉套作对棉花根际和非根际土壤微生物数量、活性和土壤养分(全氮、有效磷和速效钾)含量的影响,结果表明:麦棉套作有利于棉花根际与非根际土壤细菌的增殖,盛蕾期不隔根处理棉花根际土壤与非根际土壤细菌数量分别是塑膜隔根处理的2.57和2.81倍.但麦棉套作不利于土壤真菌和放线菌的增殖.细菌在土壤微生物区系中占99.9%.所以,麦棉套作显著提高了棉花土壤微生物数量,同时也增强了微生物活性.麦棉共处期纱网隔根处理棉花土壤全氮、有效磷、速效钾含量显著高于不隔根处理和塑膜隔根处理,证明麦棉套作系统中小麦根系分泌物与脱落物的存在对棉花土壤养分含量的增加有明显的促进作用,即存在种间营养补偿效应.而共处期不隔根处理套作棉土壤养分含量总体上显著低于隔根处理的现象则反映出小麦根系对棉花土壤养分的竞争作用大于其对棉花土壤养分的促进作用.小麦收获后,小麦根系对棉花养分的竞争作用解除,不隔根处理棉花土壤养分含量显著高于塑膜隔根和纱网隔根处理.  相似文献   

11.
A high rate of ethylene production was observed in buds and young flowers of Aranda orchid, which increased with bud growth, reaching a high value in half-opened flower. This was followed by a gradual decline but it increased again when the flowers showed sign of senescence. Aminooxylacetic acid (AOA) inhibited ethylene production and bud expansion of Aranda buds.  相似文献   

12.
In laboratory incubation experiments, application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2',6'-diethyl acetanilide) to three tropical rice soils, widely differing in their physicochemical characteristics, under flooded condition inhibited methane (CH4) production. The inhibitory effect was concentration dependent and most remarkable in the alluvial soil. Thus, following application of butachlor at 5, 10, 50 and 100 microg g(-1) soil, respectively, cumulative CH4 production in the alluvial soil was inhibited by 15%, 31%, 91% and 98% over unamended control. Since CH4 production was less pronounced in the sandy loam and acid sulfate soil, the impact of amendment with butchalor, albeit inhibitory, was less extensive than the alluvial soil. Inhibition of CH4 production in butachlor-amended alluvial soil was related to the prevention in the drop in redox potential as well as low methanogenic bacterial population especially at high concentrations of butachlor. CH4 oxidation was also inhibited in butachlor-amended alluvial soil with the inhibitory effect being more prevalent under flooded condition. Inhibition in CH4 oxidation was related to a reduction in the population of soluble methane monooxygenase producing methanotrophs. Results demonstrate that butachlor, a commonly used herbicide in rice cultivation, even at very low concentrations can affect CH4 production and its oxidation, thereby influencing the biogeochemical cycle of CH4 in flooded rice soils.  相似文献   

13.
Methane consumption in two temperate forest soils   总被引:4,自引:4,他引:0  
Forest soils are thought to be an important sink for atmospheric methane. To evaluate methane consumption,14C-labeled methane was added to the headspace of intact soil cores collected from a mixed mesophytic forest and from a red spruce forest located in the central Appalachian Mountains. Both soils consumed the added methane at initially high rates that decreased as the methane mixing ratio of the air decreased. The mixed mesophytic forest soil consumed an average of 2 mg CH4 m–2 d–1 versus 1 mg CH, m–2 d–1 for the spruce forest soil. The addition of acetylene to the headspace completely suppressed methane consumption by the soils, suggesting that an aerobic methane-consuming microorganism mediated the process. At both forest sites, methane mixing ratios in soil air spaces were greater than that in the air overlying the soil surface, indicating that these soils had the ability to produce methane. Models of methane emission from forest soils to the atmosphere must represent methane flux as the balance between production and consumption of methane, which are controlled by very different factors  相似文献   

14.
Production of ethylene by infected preclimacteric apple peel is much more sensitive to inhibition by acetate and potassium nitrate than is that from healthy climacteric peel. The opposite is true of the efrect of rhizobitoxine. It is suggested that the ethylene produced from the infected tissues originates from the host's metabolism rather than from that of the fungus, but by a pathway different from that operative in healthy climacteric peel.  相似文献   

15.
16.
In rice microcosms (Oryza sativa, var. Roma, type japonica),CH4 emission, CH4 production, CH4oxidation and CH4 accumulation were measured over an entirevegetation period. Diffusive CH4 emission was measured inclosed chambers, CH4 production was measured in soil samples,CH4 oxidation was determined from the difference between oxicand anoxic emissions, and CH4 accumulation was measured byanalysis of porewater and gas bubbles. The sum of diffusiveCH4 emission, CH4 oxidation, andCH4 accumulation was only 60% of the cumulativeCH4 production. The two values diverged during the first 50days (vegetative phase) and then again during the last 50 days (latereproductive phase and senescence) of the 150 day vegetation period. Duringthe period of day 50–100 (early reproductive phase/flowering), theprocesses were balanced. Most likely, gas bubbles and diffusion limitationare responsible for the divergence in the early and late phases. The effectof rice on CH4 production rates and CH4concentrations was studied by measuring these processes also in unplantedmicrocosms. Presence of rice plants lowered the CH4concentrations, but had no net effect on the CH4 productionrates.  相似文献   

17.
The role of rhodanese as an intermediate catalyst in the oxidation of elemental S (S°) is not well understood. This study investigated the effect of 26 soil properties and steam sterilization in relation to S° oxidation and rhodanese activity in 33 soils (27 Oregon soils and six Chinese soils). S° oxidation potential was determined by incubating (7 d at 23 °C) soil amended with 500 mg S° kg-1 soil and measuring the SO4 released. Both total S° oxidation (TSO) and rhodanese activity varied widely among the 33 soils, ranging from 0 to 143 mg SO4-S kg-1 soil 7 d-1 and 22 to 2109 nmoles SCN- g-1 soil h-1 respectively. S° oxidation but not rhodanese activity had a significant positive correlation with soil pH. In sterile soils, chemical S° oxidation (CSO) averaged 3% of the total S° oxidation and apparent rhodanese activity averaged 11% of the total rhodanese activity. S° oxidation was not significantly correlated with rhodanese activity. However, development of stepwise regression models predicting S° oxidation revealed that rhodanese activity was an important explanatory variable in predicting biological S° oxidation (TSO minus CSO). Also, microbial biomass C was found to be an important parameter in models for both S° oxidation and rhodanese activity. Investigations of the effect of acidification during S° oxidation showed that biological S° oxidation was negatively correlated with S° oxidation-induced-pH-change for soils with pH > 6 but no such significant relationship was found on soils with pH> 6. This suggested that extreme acidity may inhibit S° oxidation but not rhodanese activity.  相似文献   

18.
Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gleyey soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8–10°C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types were studied by the radioisotope method at 5 and 15°C. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane production was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane production in all the horizons of the mossy-lichen tundra and of the hillock tundra with flat-bottom depressions. Methanogenesis prevailed only in a sedge-peat moss bog at 15°C. Bacterial enrichment cultures oxidizing methane at 5 and 15°C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5°C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15°C.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 261–270.Original Russian Text Copyright © 2005 by Berestovskaya, Rusanov, Vasileva, Pimenov.  相似文献   

19.
Thermophilic methane production and oxidation in compost   总被引:1,自引:0,他引:1  
Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost.  相似文献   

20.
Methane is one of the strongest of the greenhouse gases, being 30-fold more radiatively active than carbon dioxide on a molar basis. In addition, its atmospheric concentrations have increased by 1% per year since the Industrial Revolution. As such, the dynamics of methane is of great importance for the prediction of global climatic changes caused by increasing concentrations of greenhouse gases in the atmosphere. One of the most important biological sinks for methane is forest soils, where methanotrophic bacteria oxidize methane to carbon dioxide. Based on data mined from a review of the literature, we determined that the mean methane oxidation rate was 1.90 mg CH4 m−2 day−1 and that the main variables controlling this rate were soil water content and inorganic nitrogen in the soils. In contrast, the effects of temperature and pH are minimal. In addition to reviewing the literature, we monitored methane oxidation rates in a temperate forest soil in Korea on a monthly basis for a year, using a static chamber method. The mean oxidation rate was 1.96 mg CH4 m−2 day−1 and was positively correlated with nitrate concentration in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号