首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 812 毫秒
1.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

2.
土壤呼吸作为陆地生态系统碳循环的关键过程,对大气CO2浓度变化有直接影响。研究其如何响应降雨变化、氮沉降增加等全球变化因子,成为近年全球变化领域的热点与难点。与土壤呼吸响应降雨变化或氮沉降增加单个因子相比,研究土壤呼吸对这两个因子交互作用的响应更接近真实的自然环境,可更准确地预估未来土壤碳排放的变化趋势。目前,相关研究涉及全球不同的陆地生态系统,从土壤、微生物和植物层面对其响应机理进行揭示。本文从土壤呼吸及其组分、相关的土壤性质、微生物及植物因素方面,较全面地梳理了不同陆地生态系统土壤呼吸响应降雨变化和氮沉降增加交互作用的研究进展,指出了现有研究中的不足及今后需加强的研究方向,以期为进一步揭示土壤呼吸对降雨变化和氮沉降增加交互作用的响应规律及机制提供参考。  相似文献   

3.
酸沉降对森林生态系统影响的研究现状及展望   总被引:14,自引:0,他引:14  
刘菊秀 《生态学杂志》2003,22(5):113-117
酸沉降影响下物质循环及其不平衡研究;酸沉降对土壤理化性质的影响;森林水化学方面的研究;酸沉降下重金属的活化研究;酸沉降对植物生长的影响研究;酸沉降和气候变化对森林的影响;模拟酸雨对土壤理化性质和植物生长的影响;酸沉降下土壤风化问题的研究;运用模型对酸化问题的研究;森林土壤人为和自然的酸化;酸沉降临界负荷的研究;酸沉降和其它污染物对植物的联合影响;酸化土壤恢复研究等方面介绍了酸沉降对森林生态系统影响的研究现状,并阐明了今后研究的方向及应该注意的问题。  相似文献   

4.
氮是陆地生态系统生产力的主要限制性因素, 土壤微生物是土壤氮转化的主要驱动因子, 随着大气氮沉降的增加, 盐渍化草地土壤微生物对不同水平氮输入的响应尚不清晰。在山西右玉黄土高原草地生态系统定位观测研究站不同水平氮添加平台(0、1、2、4、8、16、24和32 g·m-2·a-1), 在实验处理的第4年(2020年)测定生长季(5-9月)氨氧化细菌(AOB)和氨氧化古菌(AOA)丰度, 土壤真菌和细菌组成, 以及土壤微生物生物量碳(MBC)、氮(MBN)含量, 探讨土壤微生物特征对不同氮输入水平的响应机制。研究表明: (1)在2020年生长季的5-9月, 由于土壤温度和水分的差异, 取样日期显著影响氨氧化微生物、细菌和真菌的数量及MBC、MBN含量。(2)氮添加仅显著影响AOB丰度, 对MBC、MBN含量及细菌和真菌丰度的影响均不显著。(3)氮添加对AOB丰度的影响与取样日期有关, 在生长季早期和高峰期(5-8月), 24和32 g·m-2·a-1氮添加显著提高AOB丰度, 在生长季后期(9月)氮添加对AOB丰度的影响不显著。(4)土壤阳离子浓度和土壤pH对AOB丰度的变异具有较高的解释度, 分别解释了土壤微生物特征变异的21.8%和17.2%。由于不同水平氮添加并未显著改变土壤阳离子浓度和土壤pH, 土壤MBC、MBN含量, 细菌和真菌的丰度对氮输入的响应不敏感, 仅在高氮处理显著提高了AOB的丰度, 说明高氮添加可能会促进盐渍化草地土壤氮的转化速率。  相似文献   

5.
土壤有效氮及其相关因素对植物细根的影响   总被引:7,自引:0,他引:7  
细根(直径≤2mm)作为植物吸收水分和养分的主要器官之一,在陆地生态系统养分循环和能量流动中起重要作用。开展土壤有效氮变化对植物细根影响研究对于了解全球气候变化条件下的陆地生态系统养分循环具有重要意义。本文就相关研究进行了综述:1)土壤有效氮变化对植物细根生长、发育、寿命及呼吸的直接影响;2)土壤质地、温度、大气CO2浓度和氮沉积等相关因素对植物细根的影响。由于研究方法及物种间差异等的影响,研究结果不尽相同。今后,应在不同空间尺度上深入研究土壤有效氮对植物细根的影响,而植物细根-土壤-微生物三者间相互关系变化对土壤氮变化的潜在响应将可能成为今后研究的热点问题之一。  相似文献   

6.
氮沉降是氮素输入生物圈的重要途径。为全面、系统地了解大气氮沉降的研究热点与前沿趋势,基于文献计量学方法运用CiteSpace软件对1984—2021年Web of Science核心数据库中大气氮沉降的相关文献进行可视化统计分析。结果表明:大气氮沉降相关的文献数量呈现逐年上升的趋势;学科领域涉及环境科学、生态学、气象学与大气科学等;美国的研究实力最强,中国则需要加强与其他国家科研机构的交流合作。中国科学院、英国生态水文中心和瑞典农业科学大学等研究机构文章数量较多;Liu XJ、Mo JM、Verheyen K等为核心作者群;Atmospheric Environment、Global Change Biology、Science of the Total Environment以及Environmental Pollution等期刊为主要载体。氮沉降特征、氮沉降的生态效应、氮沉降化合物溯源是氮沉降领域研究的核心内容。大尺度的全球氮沉降动态研究、植物和土壤微生物协同响应氮添加的机制、氮沉降源解析及减排策略的制定是当前氮沉降研究领域的前沿热点。上述研究结果可为大气氮沉降领域学者凝练科学问题...  相似文献   

7.
不同环境条件下土壤微生物对模拟大气氮沉降的响应   总被引:7,自引:0,他引:7  
刘蔚秋  刘滨扬  王江  雷纯义 《生态学报》2010,30(7):1691-1698
研究了林内及林缘两个生境中,在有苔藓覆盖和无苔藓覆盖条件下,人工加氮对土壤理化性质及土壤微生物群落的影响。结果显示加氮使土壤pH下降,有效态氮和有效态磷的含量上升,但不同生境及有无苔藓植物覆盖在一定程度上影响土壤理化性质及其对加氮的反应。苔藓植物覆盖可以缓解加氮引起的土壤酸化及有效氮含量上升压力,促进有效态磷含量上升。不同生境中,土壤微生物对氮沉降的响应亦不同。低氮使林缘生境土壤微生物的胁迫程度减小,中高氮使其胁迫程度上升,而任何加氮均增加林内生境中土壤微生物的胁迫程度。两个生境中,苔藓植物覆盖均可以缓解过量氮沉降对土壤微生物造成的压力,降低过量氮沉降对土壤微生物的伤害,提高土壤微生物的代谢活性。  相似文献   

8.
大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化不仅改变了森林土壤理化性质,而且影响了植物的生长和微生物活性,导致森林土壤碳、氮循环发生改变,进而影响土壤CH4的吸收.本研究综述了森林土壤CH4吸收的重要性,森林土壤CH4吸收对大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化的响应差异及驱动机制.大气CO2浓度升高抑制土壤CH4吸收;降水减少倾向于促进土壤CH4吸收;外源氮输入抑制富氮森林土壤CH4吸收,而对贫氮森林土壤CH4吸收则表现为促进或不影响;森林转化为草地、农田或人工林会减少土壤CH4的吸收量,而植树造林则会增加土壤CH4的吸收量.今后的研究重点是探讨全球变化对森林土壤CH4吸收产生长期影响和综合效应,并借助分子生物学方法进一步探究土壤CH4吸收的微生物学机制.  相似文献   

9.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

10.
大气氮沉降影响草地植物物种多样性机制研究综述   总被引:3,自引:0,他引:3  
张世虎  张悦  马晓玉  王聪  马群  杨雪纯  徐婷  马越  郑智 《生态学报》2022,42(4):1252-1261
大气氮沉降对草地生态系统结构和功能的影响已成为全球变化生物学研究重点。大气氮沉降导致草地群落物种多样性降低已成为全球普遍现象,但其生物学机制还不清楚,因此有必要系统梳理大气氮沉降对全球不同草地生态系统的研究结果,以便在氮沉降背景下为我国草地生态系统的研究和管理制定科学决策。系统综述了氮沉降降低草地群落物种多样性的可能机制,主要包括资源竞争排斥、群落更新限制、土壤酸化及其离子毒害、养分失衡、氮素本身的毒害、次生胁迫。氮沉降导致草地物种多样性降低是多种机制综合作用的结果,每种机制在不同时空具有不同的相对贡献。同时,与欧洲酸性土壤草地和美国高草草原相比,我国草地土壤类型和植被属性具有明显差异。因此,应根据我国草地生态系统的特征、不同植物功能利用养分策略,从土壤养分变化、根系养分吸收转运、叶片生理过程等方面的整合研究思路,探讨氮沉降影响我国草地群落物种多样性的生物学机制,为我国草地生态系统的科学管理提供理论依据。  相似文献   

11.
Seedling establishment in heavily compact soils is hampered by poor root growth caused by soil chemical or physical factors. This study aims to determine the role of ethylene in regulating root elongation through mechanically impeded sandy soils using Eucalyptus todtiana F. Muell seedlings. Concentrations of ethephon (1, 10, and 100???M) were added to non-compact soils, and endogenous ethylene production from seedling roots was compared to ethylene production of roots grown in physically compacted field soils (98.6?% sand). The ethylene-inhibitor 3,5-diiodo-4-hydroxybenzoic acid (DIHB) (0.1???M) was included for each treatment to counteract the negative effects of excess ethylene or compact soils on root elongation. Root elongation was reduced in high ethylene soils by 49?% and high bulk density soils by 44?%. Root ethylene production increased ninefold in roots grown in the high ethylene environment (100???M), but decreased 80?% in compact soils. The use of DIHB did not alter root length and produced varying results with respect to ethylene production, suggesting an interaction effect involving high amounts of soil ethylene. While ethylene regulates root growth, the physical strength of sandy soils is the major factor limiting root elongation in mechanically impeded soils.  相似文献   

12.
Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.  相似文献   

13.
Seasonal fluctuations in the methane flow in the soil-atmosphere system were determined for gray forest soils of Central Russia. Consumption of atmospheric methane was found to exceed methane emission in gray forest soils under forest and in agrocenosis. The average annual rates of atmospheric methane consumption by the soil under forest and in agrocenosis were 0.026 and 0.008 mg CH4-C/(m2 h), respectively. The annual rate of atmospheric methane oxidation in the gray forest soils of Moscow oblast was estimated to be 0.68 kton. Seasonal fluctuations in the methane oxidation activity were due to changes in the hydrothermal conditions and in the reserves of readily decomposable organic matter and mineral nitrogen, as well as to changes in the activity of methane oxidizers.  相似文献   

14.
温度对土壤氧化大气CH4的影响   总被引:9,自引:1,他引:8  
讨论了温度对土壤氧化大气CH4的影响及其机理。当温度较低时土壤也具有一定的氧化大气CH4的能力,两者具有很高的相关关系,但是由于CH4氧化菌对大气CH4具有很强的亲和力以及大气CH4氧化所需活化能较低,因此土壤氧化大气CH4对温度的敏感度远低于产CH4,导致温度系数Q10较小。当大气CH4和O2扩散进入土壤的速率等于土壤中CH4和O2消耗的速率时,大气CH4氧化达到最大值,此时的土壤温度就是CH4氧化的最佳温度。如果温度继续升高并大于最佳温度,由于CH4氧化菌无法与利用O2能力更强的硝化细菌和其它微生物竞争利用土壤空气中有限的O2,使得土壤中CH4氧化菌的繁殖和活性降低。这一作用机理的提出较好地解释了为什么随着温度升高土壤氧化大气CH4能力呈低高低的态势。  相似文献   

15.
丛枝菌根网络的生态学功能研究进展   总被引:2,自引:2,他引:0  
王茜  王强  王晓娟  张亮  金樑 《生态学杂志》2015,26(7):2192-2202
丛枝菌根(AM)真菌是陆地生态系统中重要的土壤微生物之一.其在土壤生态系统中延伸出的根外菌丝,可以通过菌丝融合的方式形成丛枝菌根网络(AMN).AMN在土壤生态系统中发挥着重要功能:一方面,AMN可以改变土壤的理化性质,其根外菌丝分泌物可以影响土壤微生物生存的微环境,进而改变土壤微生物的群落组成;另一方面,AM真菌的根外菌丝可以吸收土壤养分,并通过AMN将吸收的营养物质在宿主植物间进行分配,调节植物物种之间的竞争关系.为了全面阐述AMN在生态系统中的功能,本文围绕最新的AMN研究成果,探究AM真菌根外菌丝在土壤中相互融合的机制、AMN影响土壤微生物的数量和组成、调节植物群落的生态学机理,以及AMN调节地下资源、植物种内和种间竞争、影响植物群落的多样性和丰富度等生态系统功能.阐述在全球变化过程中AMN与大气氮沉降、CO2浓度升高以及温度升高的相关性,探究其在维持生态系统稳定性中的作用,并对本领域未来的发展方向和应用前景进行展望.  相似文献   

16.
Abstract The role of autotrophic and heterotrophic nitrifying microorganisms in the oxidation of atmospheric ammonium in two acid and one calcareous location of a Dutch woodland area was investigated. In soil slurries nitrate formation was completely inhibited by acetylene, a specific inhibitor of autotrophic ammonium-oxidizing bacteria. A survey of nitrifiers in the forest soils showed that both autotrophic ammonium- and nitrite-oxidizing bacteria were present in high numbers and evidence was obtained that autotrophic bacteria are able to nitrify below pH 4. These results show that autotrophic nitrifying bacteria may account for most of the nitrification in the examined soils. To assess the contribution of heterotrophic nitrifiers, about 200 strains of heterotrophic bacteria and 21 morphologically distinct fungal strains were isolated from the acid soil locations and tested for their ability to nitrify. Only one Penicillium strain produced nitrate in test media, but its nitrate formation when added to acid soils was poor. These findings indicate that in the investigated soil heterotrophs are of minor importance in the oxidation of atmospheric ammonium.  相似文献   

17.
Semenov  V. M.  Kravchenko  I. K.  Kuznetsova  T. V.  Semenova  N. A.  Bykova  S. A.  Dulov  L. E.  Gal'chenko  V. F.  Pardini  G.  Gispert  M.  Boeckx  P.  Van Cleemput  O. 《Microbiology》2004,73(3):356-362
Seasonal fluctuations in the methane fluxes in the soil–atmosphere system were determined for gray forest soils of Central Russia. Consumption of atmospheric methane was found to exceed methane emission in gray forest soils under forest and in the agrocenosis. The average annual rates of atmospheric methane consumption by the soil under forest and in the agrocenosis were 0.026 and 0.008 mg C-CH4/(m2 h), respectively. The annual rate of atmospheric methane oxidation in the gray forest soils of Moscow oblast was estimated to be 0.68 kton. Seasonal fluctuations in the methane oxidation activity were due to changes in the hydrothermal conditions and in the reserves of readily decomposable organic matter and mineral nitrogen, as well as to changes in the activity of methane oxidizers.  相似文献   

18.
Large areas of the Amazon are subject to seasonal flooding due to water level changes of the river. This flood pulse causes rapidly changing conditions for microorganisms living in the soils which affects the cycling of nitrogen in the ecosystem. An understanding of the nitrogen dynamics in the seasonally flooded soils is essential for the development of productive and sustainable management concepts. We measured nitrogen concentrations, denitrifier enzyme activity (DEA), cell numbers of nitrifying and denitrifying bacteria, respiration, pH and total carbon in the seasonally flooded soils over one entire annual hydrological cycle. By comparing three sites with different vegetation (forest, aquatic macrophyte stand and bare sediment with annual herbs) we assessed the effect of vegetation on soil nitrogen dynamics. Inorganic nitrogen was always dominated by ammonium indicating reduced conditions in the soil even during the terrestrial phase. Although conditions were generally poor for nitrification we observed high numbers of nitrifying bacteria between 104 and 107cells g–1. Pulses of ammonium as well as high DEA were observed during the transition periods between aquatic and terrestrial phase. Thus the alternation between aquatic and terrestrial phase promotes nitrogen mineralization and denitrification in the soils. There were no plausible correlations between microbial activities and numbers with soil physical or chemical parameters except a relation between the numbers of nitrate reducing bacteria and soil moisture (R2 = 0.81) and ammonium (R2 = 0.92) at one site. This shows the complex regulation patterns in this habitat. Different vegetation did not alter the general patterns of nitrogen dynamics but the absolute extend of fluctuations. We conclude that both the soil physical and chemical changes directly caused by the flood pulse and the vegetation have a great impact on microbial nitrogen turnover in the soils. The effects of the flood pulse can be buffered by a fine soil texture or a litter layer which prevents desiccation of the soil during the terrestrial phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号