首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

2.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

3.
The ability of mature T lymphocytes to develop effector capacity after encounter with cognate Ag is generally dependent upon inflammatory signals associated with infection that induce dendritic cell activation/maturation. These inflammatory signals can derive directly from pathogens or can be expressed by host cells in response to infection. Heat shock proteins (HSPs) are a class of host-derived inflammatory mediators that perform the dual function of both chaperoning MHC class I-restricted epitopes into the cross-presentation pathway of DCs and inducing the activation/maturation of these DCs to allow priming of cognate CD8(+) T cell effector responses. Although the ability of HSPs to elicit effector CD8 cell responses has been well established, their potential to prime CD4 cell effector responses has been relatively unexplored. In the current study we compared the ability of the endoplasmic reticulum-resident HSP gp96 to prime CD4 vs CD8 cells using TCR transgenic adoptive transfer systems and soluble gp96-peptide complexes. As expected, gp96 facilitated the cross-presentation of a class I-restricted peptide and priming of effector function in cognate CD8 cells. Interestingly, gp96 also facilitated the in vivo presentation of a class II-restricted peptide; however, the resulting CD4 cell response did not involve the development of effector function. Taken together, these data suggest that gp96 is an inflammatory mediator that selectively primes CD8 cell effector function.  相似文献   

4.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

5.
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DR beta 1*0401, and HLA-DR beta 1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DR beta 1*0401- and HLA-DR beta 1*0701-restricted peptides from gp100 to CD4(+) T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8(+) and CD4(+) T cells in vitro and in human vaccination trials.  相似文献   

6.
HIV diversity may limit the breadth of vaccine coverage due to epitope sequence differences between strains. Although amino acid substitutions within CD8(+) T cell HIV epitopes can result in complete or partial abrogation of responses, this has primarily been demonstrated in effector CD8(+) T cells. In an HIV-infected Kenyan cohort, we demonstrate that the cross-reactivity of HIV epitope variants differs dramatically between overnight IFN-gamma and longer-term proliferation assays. For most epitopes, particular variants (not the index peptide) were preferred in proliferation in the absence of corresponding overnight IFN-gamma responses and in the absence of the variant in the HIV quasispecies. Most proliferating CD8(+) T cells were polyfunctional via cytokine analyses. A trend to positive correlation was observed between proliferation (but not IFN-gamma) and CD4 counts. We present findings relevant to the assessment of HIV vaccine candidates and toward a better understanding of how viral diversity is tolerated by central and effector memory CD8(+) T cells.  相似文献   

7.
IFN-gamma is an essential component of the early Listeria monocytogenes-specific immune response, and is also an important regulator of Ag processing and presentation. Ag presentation is required for the induction and also the effector function of antimicrobial T cells. To evaluate the effect of IFN-gamma on bacterial Ag presentation in vivo, macrophages and dendritic cells were separated from L. monocytogenes-infected tissues and analyzed with peptide-specific CD4 and CD8 T cell lines in a sensitive ELISPOT-based ex vivo Ag presentation assay. The comparison of professional APCs isolated from infected IFN-gamma-deficient and wild-type mice revealed different peptide presentation patterns of L. monocytogenes-derived CD8 T cell epitopes, while the presentation pattern of CD4 T cell epitopes remained unchanged. The further in vitro analysis of the generation of CD8 T cell epitopes revealed a peptide-specific effect of IFN-gamma on MHC class I-restricted Ag presentation. These results show that despite this modulation of the Ag presentation pattern of CD8 T cell epitopes, IFN-gamma is not generally required for the MHC class I- and MHC class II-restricted presentation of L. monocytogenes-derived antigenic peptides by professional APCs in vivo.  相似文献   

8.
Viral epitopes that are recognized by both HLA class I-restricted and class II-restricted T cells have been defined for a type A influenza virus nucleoprotein (NP) peptide. CD8+ and CD4+ CTL lines have been generated against a synthetic peptide encompassing residues 335 to 349 of NP that are restricted by HLA-B37 and HLA-DQw5, respectively. Both of these CTL populations were capable of specifically lysing influenza A virus-infected targets, indicating that a naturally processed NP peptide(s) was being mimicked by the NP (335-349) peptide. Amino acid residues that are critical for recognition of this NP determinant in the context of HLA-B37 and HLA-DQw5 were investigated by the use of panels of truncated and alanine-substituted NP peptides. The results demonstrate that: 1) truncations in the amino- or carboxy-terminal ends differentially affect CD8+ and CD4+ CTL recognition; 2) the NP (335-349) sequence contains two octapeptide epitopes that share a core of six amino acid residues (NP 338-343); and 3) alanine substitutions at five of these residues abrogated recognition by at least one of the CD8+ and CD4+ CTL lines. Thus, these class I- and class II-restricted CTL lines recognize similar but distinct epitopes, and different structural features of the NP peptide are required for presentation by HLA-B37 and HLA-DQw5. Comparison of the amino acid sequences of the NP peptide presented by HLA-B37 and HLA-DQw5 with other peptides known to be presented by both class I and class II molecules revealed a common motif among these peptides.  相似文献   

9.
It is becoming increasingly clear that any human immunodeficiency virus (HIV) vaccine should induce a strong CD8(+) response. Additional desirable elements are multispecificity and a focus on conserved epitopes. The use of multiple conserved epitopes arranged in an artificial gene (or EpiGene) is a potential means to achieve these goals. To test this concept in a relevant disease model we sought to identify multiple simian immunodeficiency virus (SIV)-derived CD8(+) epitopes bound by a single nonhuman primate major histocompatibility complex (MHC) class I molecule. We had previously identified the peptide binding motif of Mamu-A*01(2), a common rhesus macaque MHC class I molecule that presents the immunodominant SIV gag-derived cytotoxic T lymphocyte (CTL) epitope Gag_CM9 (CTPYDINQM). Herein, we scanned SIV proteins for the presence of Mamu-A*01 motifs. The binding capacity of 221 motif-positive peptides was determined using purified Mamu-A*01 molecules. Thirty-seven peptides bound with apparent K(d) values of 500 nM or lower, with 21 peptides binding better than the Gag_CM9 peptide. Peripheral blood mononuclear cells from SIV-infected Mamu-A*01(+) macaques recognized 14 of these peptides in ELISPOT, CTL, or tetramer analyses. This study reveals an unprecedented complexity and diversity of anti-SIV CTL responses. Furthermore, it represents an important step toward the design of a multiepitope vaccine for SIV and HIV.  相似文献   

10.
Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, “promiscuous” (multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.  相似文献   

11.
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+) T cells and around day 9 for CD4(+) T cells. By fitting a model to the data, we characterize the kinetic differences between CD4(+) and CD8(+) T cell responses and among the immunodominant and subdominant responses to the various epitopes. CD8(+) T cell responses have faster kinetics in almost every aspect of the response. For CD8(+) and CD4(+) T cells, the doubling time during the initial expansion phase is 8 and 11 h, respectively. The half-life during the contraction phase following the peak of the response is 41 h and 3 days, respectively. CD4(+) responses are even slower because their contraction phase appears to be biphasic, approaching a 35-day half-life 8 days after the peak of the response. The half-life during the memory phase is 500 days for the CD4(+) T cell responses and appears to be lifelong for the six CD8(+) T cell responses. Comparing the responses between the various epitopes, we find that immunodominant responses have an earlier and/or larger recruitment of precursors cells before the expansion phase and/or have a faster proliferation rate during the expansion phase.  相似文献   

12.
13.
The secreted Mycobacterium tuberculosis 10-kDa culture filtrate protein (CFP)10 is a potent T cell Ag that is recognized by a high percentage of persons infected with M. tuberculosis. We determined the molecular basis for this widespread recognition by identifying and characterizing a 15-mer peptide, CFP10(71-85), that elicited IFN-gamma production and CTL activity by both CD4(+) and CD8(+) T cells from persons expressing multiple MHC class II and class I molecules, respectively. CFP10(71-85) contained at least two epitopes, one of 10 aa (peptide T1) and another of 9 aa (peptide T6). T1 was recognized by CD4(+) cells in the context of DRB1*04, DR5*0101, and DQB1*03, and by CD8(+) cells of A2(+) donors. T6 elicited responses by CD4(+) cells in the context of DRB1*04 and DQB1*03, and by CD8(+) cells of B35(+) donors. Deleting a single amino acid from the amino or carboxy terminus of either peptide markedly reduced IFN-gamma production, suggesting that they are minimal epitopes for both CD4(+) and CD8(+) cells. As far as we are aware, these are the shortest microbial peptides that have been found to elicit responses by both T cell subpopulations. The capacity of CFP10(71-85) to stimulate IFN-gamma production and CTL activity by CD4(+) and CD8(+) cells from persons expressing a spectrum of MHC molecules suggests that this peptide is an excellent candidate for inclusion in a subunit antituberculosis vaccine.  相似文献   

14.
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.  相似文献   

15.
CD8(+) T cells are a key focus of vaccine development efforts for HIV. However, there is no clear consensus as to which of the nine HIV proteins should be used for vaccination. The early proteins Tat, Rev, and Nef may be better CD8(+) T cell targets than the late-expressed structural proteins Gag, Pol, and Env. In this study, we show that Gag-specific CD8(+) T cells recognize infected CD4(+) T lymphocytes as early as 2 h postinfection, before proviral DNA integration, viral protein synthesis, and Nef-mediated MHC class I down-regulation. Additionally, the number of Gag epitopes recognized by CD8(+) T cells was significantly associated with lower viremia (p = 0.0017) in SIV-infected rhesus macaques. These results suggest that HIV vaccines should focus CD8(+) T cell responses on Gag.  相似文献   

16.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

17.
CD4(+) Th cells play an important role in the induction and maintenance of adequate CD8(+) T cell-mediated antitumor responses. Therefore, identification of MHC class II-restricted tumor antigenic epitopes is of major importance for the development of effective immunotherapies with synthetic peptides. CAMEL and NY-ESO-ORF2 are tumor Ags translated in an alternative open reading frame from the highly homologous LAGE-1 and NY-ESO-1 genes, respectively. In this study, we investigated whether CD4(+) T cell responses could be induced in vitro by autologous, mature dendritic cells pulsed with recombinant CAMEL protein. The data show efficient induction of CAMEL-specific CD4(+) T cells with mixed Th1/Th2 phenotype in two healthy donors. Isolation of CD4(+) T cell clones from the T cell cultures of both donors led to the identification of four naturally processed HLA-DR-binding CAMEL epitopes: CAMEL(1-20), CAMEL(14-33), CAMEL(46-65), and CAMEL(81-102). Two peptides (CAMEL(1-20) and CAMEL(14-33)) also contain previously identified HLA class I-binding CD8(+) T cell epitopes shared by CAMEL and NY-ESO-ORF2 and are therefore interesting tools to explore for immunotherapy. Furthermore, two CD4(+) T cell clones that recognized the CAMEL(14-33) peptide with similar affinities were shown to differ in recognition of tumor cells. These CD4(+) T cell clones recognized the same minimal epitope and expressed similar levels of adhesion, costimulatory, and inhibitory molecules. TCR analysis demonstrated that these clones expressed identical TCR beta-chains, but different complementarity-determining region 3 loops of the TCR alpha-chains. Introduction of the TCRs into proper recipient cells should reveal whether the different complementarity-determining region 3 alpha loops are important for tumor cell recognition.  相似文献   

18.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

19.
CD4(+) T cells are known to provide support for the activation and expansion of primary CD8(+) T cells, their subsequent differentiation, and ultimately their survival as memory cells. However, the importance of cognate memory CD4(+) T cells in the expansion of memory CD8(+) T cells after re-exposure to Ag has been not been examined in detail. Using bone marrow-derived dendritic cells pulsed with cognate or noncognate MHC class I- and class II-restricted peptides, we examined whether the presence of memory CD4(+) T cells with the same Ag specificity as memory CD8(+) T cells influenced the quantity and quality of the secondary CD8(+) T cell response. After recombinant vaccinia virus-mediated challenge, we demonstrate that, although cognate memory CD4(+) T cells are not required for activation of secondary CD8(+) T cells, their presence enhances the expansion of cognate memory CD8(+) T cells. Cognate CD4(+) T cell help results in an approximate 2-fold increase in the frequency of secondary CD8(+) T cells in secondary lymphoid tissues, and can be accounted for by enhanced proliferation in the secondary CD8(+) T cell population. In addition, cognate memory CD4(+) T cells further selectively enhance secondary CD8(+) T cell infiltration of tumor-associated peripheral tissue, and this is accompanied by increased differentiation into effector phenotype within the secondary CD8(+) T cell population. The consequence of these improvements to the magnitude and phenotype of the secondary CD8(+) T cell response is substantial increase in control of tumor outgrowth.  相似文献   

20.
Evidence suggests that cellular immune responses play a crucial role in the control of HIV and SIV replication in infected individuals. Several vaccine strategies have therefore targeted these CD8(+) and CD4(+) responses. Whether vaccination induces the same repertoire of responses seen after infection is, however, a key unanswered question in HIV vaccine development. We therefore compared the epitope specificity induced by vaccination to that present postchallenge in the peripheral blood. Intracellular cytokine staining of PBMC stimulated with overlapping 15/20-mer peptides spanning the proteins of SIV were measured after DNA/modified vaccinia Ankara vaccination of eight rhesus macaques. Lymphocytes from 8 animals recognized a total of 39 CD8 epitopes and 41 CD4 epitopes encoded by the vaccine. T cell responses were again monitored after challenge with SIVmac239 to investigate the evolution of these responses. Only 57% of all CD8(+) T cell responses and 19% of all CD4(+) T cell responses present after vaccination were recalled after infection as measured in the peripheral blood. Interestingly, 29 new CD8 epitopes and 5 new CD4 epitopes were recognized by PBMC in the acute phase. These new epitopes were not detected after vaccination, and only some of them were maintained in the chronic phase (33% of CD8 and no CD4 responses). Additionally, 24 new CD8 epitopes and 7 new CD4 epitopes were recognized by PBMC in the chronic phase of infection. The repertoire of the immune response detected in the peripheral blood after immunization substantially differed from the immune response detected in the peripheral blood after infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号