首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chimeric recombinant virus rHPIV3-N(B), a version of human parainfluenza virus type 3 (HPIV3) that is attenuated due to the presence of the bovine PIV3 nucleocapsid (N) protein open reading frame (ORF) in place of the HPIV3 ORF, was modified to encode the measles virus hemagglutinin (HA) inserted as an additional, supernumerary gene between the HPIV3 P and M genes. This recombinant, designated rHPIV3-N(B)HA, replicated like its attenuated rHPIV3-N(B) parent virus in vitro and in the upper and lower respiratory tracts of rhesus monkeys, indicating that the insertion of the measles virus HA did not further attenuate rHPIV3-N(B) in vitro or in vivo. Monkeys immunized with rHPIV3-N(B)HA developed a vigorous immune response to both measles virus and HPIV3, with serum antibody titers to both measles virus (neutralizing antibody) and HPIV3 (hemagglutination inhibiting antibody) of over 1:500. An attenuated HPIV3 expressing a major protective antigen of measles virus provides a method for immunization against measles by the intranasal route, a route that has been shown with HPIV3 and respiratory syncytial virus vaccines to be relatively refractory to the neutralizing and immunosuppressive effects of maternally derived virus-specific serum antibodies. It should now be possible to induce a protective immune response against measles virus in 6-month-old infants, an age group that in developing areas of the world is not responsive to the current measles virus vaccine.  相似文献   

2.
Patas monkeys (Eryphrocebus patas) were immunized intradermally with two vaccinia virus recombinants that individually express the hemagglutinin-neuraminidase glycoprotein or the fusion glycoprotein of human parainfluenza virus type 3 (PIV3). These immunizations induced a high titer of PIV3 serum-neutralizing antibodies. At 1 month after immunization, monkeys were challenged intratracheally with PIV3. Subsequent virus replication was reduced in these monkeys by 3.2 log10 and 1.9 log10 (mean peak virus titers) in the upper and lower respiratory tracts, respectively, compared with control animals. The average duration of virus shedding was also reduced from 9.0 to 3.4 days in the upper respiratory tract and from 5.3 to 1.2 days in the lower respiratory tract. These findings demonstrate that a single intradermal dose of live recombinant vaccinia viruses can significantly restrict the replication of a virus which primarily infects the epithelial cells of the respiratory tract.  相似文献   

3.
The shipping fever (SF) and Kansas (Ka) strains of bovine parainfluenza virus type 3 (BPIV3) are restricted in their replication in rhesus monkeys 100- to 1,000-fold compared to human parainfluenza virus type 3 (HPIV3), and the Ka strain also was shown to be attenuated in humans. To initiate an investigation of the genetic basis of the attenuation of BPIV3 in primates, we produced viable chimeric HPIV3 recombinants containing the nucleoprotein (N) open reading frame (ORF) from either BPIV3 Ka or SF in place of the HPIV3 N ORF. These chimeric recombinants were designated cKa-N and cSF-N, respectively. Remarkably, cKa-N and cSF-N grew to titers comparable to those of their HPIV3 and BPIV3 parents in LLC-MK2 monkey kidney and Madin-Darby bovine kidney cells. Thus, the heterologous nature of the N protein did not impede replication in vitro. However, cKa-N and cSF-N were each restricted in replication in rhesus monkeys to a similar extent as Ka and SF, respectively. This identified the BPIV3 N protein as a determinant of the host range restriction of BPIV3 in primates. These chimeras thus combine the antigenic determinants of HPIV3 with the host range restriction and attenuation phenotype of BPIV3. Despite their restricted replication in rhesus monkeys, the chimeric viruses induced a level of resistance to HPIV3 challenge in these animals which was indistinguishable from that conferred by immunization with HPIV3. The infectivity, attenuation, and immunogenicity of these BPIV3/HPIV3 chimeras suggest that the modified Jennerian approach described in the present report represents a novel method to design vaccines to protect against HPIV3-induced disease in humans.  相似文献   

4.
5.
We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955-2961, 1998; M. H. Skiadopoulos et al., Vaccine 18:503-510, 1999). However, using the same strategy, we failed to recover recombinant chimeric PIV3-PIV2 isolate carrying the full-length PIV2 glycoproteins in a wild-type PIV3 backbone. Viable PIV3-PIV2 chimeras were recovered when chimeric HN and F open reading frames (ORFs) rather than complete PIV2 F and HN ORFs were used to construct the full-length cDNA. The recovered viruses, designated rPIV3-2CT, in which the PIV2 ectodomain and transmembrane domain were fused to the PIV3 cytoplasmic domain, and rPIV3-2TM, in which the PIV2 ectodomain was fused to the PIV3 transmembrane and cytoplasmic tail domain, possessed similar in vitro and in vivo phenotypes. Thus, it appeared that only the cytoplasmic tail of the HN or F glycoprotein of PIV3 was required for successful recovery of PIV3-PIV2 chimeras. Although rPIV3-2CT and rPIV3-2TM replicated efficiently in vitro, they were moderately to highly attenuated for replication in the respiratory tracts of hamsters, African green monkeys (AGMs), and chimpanzees. This unexpected finding indicated that chimerization of the HN and F proteins of PIV2 and PIV3 itself specified an attenuation phenotype in vivo. Despite this attenuation, these viruses were highly immunogenic and protective against challenge with wild-type PIV2 in hamsters and AGMs, and they represent promising candidates for clinical evaluation as a vaccine against PIV2. These chimeric viruses were further attenuated by the addition of 12 mutations of PIV3cp45 which lie outside of the HN and F genes. The attenuating effects of these mutations were additive with that of the chimerization, and thus inclusion of all or some of the cp45 mutations provides a means to further attenuate the PIV3-PIV2 chimeric vaccine candidates if necessary.  相似文献   

6.
Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39 degrees C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37 degrees C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses.  相似文献   

7.
Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.  相似文献   

8.
T A Sato  M Enami    T Kohama 《Journal of virology》1995,69(1):513-516
The hemagglutinin (H) glycoprotein was isolated in a soluble form by digesting measles virus particles with an endoproteinase, Asp-N (from a Pseudomonas fragi mutant). Digestion of H with Asp-N brought about glycopeptides in three different forms, depending on the cleaving site: AHD, which has an M(r) of 66,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which formed a disulfide-linked homodimer with an M(r) of 132,000, and two monomeric digestion products, AHM-1 (with an M(r) of 64,000) and AHM-2 (with an M(r) of 58,000). The susceptibility of the H glycoprotein to the protease depended on the enzyme concentration. AHD was readily formed at a low concentration of Asp-N, while AHM-1 and AHM-2 required higher and even higher protease concentrations, respectively. All of the cleavage products reacted with monoclonal antibodies to various epitopes of the H protein; however, only AHD showed a significant hemagglutinin activity on African green monkey erythrocytes. The hemagglutinin activities of AHM-1 and AHM-2 were restored after a monoclonal antibody lacking the hemagglutination-inhibiting activity was added to the reaction mixture. AHDs purified by size-exclusion high-pressure liquid chromatography had two associating forms; one had an M(r) higher than and the other an M(r) as high as that of a tetramer. The former was associated noncovalently in addition to having two intermolecular disulfide bonds, and the latter was associated covalently with a single intermolecular disulfide bond and was also duplicated through a noncovalent association. In addition, both AHM-1 and AHM-2, having no intermolecular disulfide bond, were in a dimer form. These results suggest that AHM-1 and AHM-2 are monovalent in the hemagglutinin activity, while AHDs are divalent. Comparative analyses of the N termini of these soluble glycopeptides with the sequence of H suggested that the cysteine residue at position 139 was responsible for the intermolecular disulfide bonding between the monomeric H glycoproteins. The cysteine at position 154 was also suggested to participate in the forming of the intermolecular disulfide bond.  相似文献   

9.
Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.  相似文献   

10.
T M Varsanyi  B Morein  A Lve    E Norrby 《Journal of virology》1987,61(12):3896-3901
The importance of each of the two surface glycoproteins of measles virus in active and passive immunization was examined in mice. Infected-cell lysates were depleted of either the hemagglutinin (H) or fusion (F) glycoprotein by using multiple cycles of immunoaffinity chromatography. The products were used to prepare immune-stimulating complexes (iscoms) containing either F or H glycoprotein. Such complexes are highly immunogenic, possibly as a result of effective presentation of viral proteins to the immune system [B. Morein, B. Sundquist, S. H?glund, K. Dalsgaard, and A. Osterhaus, Nature (London) 308:457-460, 1984]. Groups of 3-week-old BALB/c mice were inoculated with the iscom preparations. All animals developed hemolysis-inhibiting antibodies, whereas only sera of animals immunized with the iscoms containing the H glycoprotein had hemagglutination-inhibiting antibodies. Sera from animals immunized with the H or F preparation only precipitated the homologous glycoprotein in radioimmune precipitation assays. The immunized animals were challenged with a lethal dose of the hamster neurotropic variant of measles virus. Of the 7-week-old animals in the nonimmunized control group, 50% died within 10 days after challenge. No animals in the immunized groups showed symptoms of disease throughout the observation period of 3 months. Passive administration of anti-H monoclonal antibodies gave full protection against the 100% lethal acute infection with the hamster neurotropic variant of measles virus in newborn mice, whereas anti-F monoclonal antibodies failed to protect the animals. This study emphasizes that both H and F glycoproteins need to be considered in the development of measles virus subunit vaccines.  相似文献   

11.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

12.
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.  相似文献   

13.
人3型副流感病毒(Human Parainfluenza Virus type 3,HPIV-3)是引起婴幼儿严重细支气管炎及肺炎等下呼吸道疾病的主要病原体,其在发达国家和发展中国家都造成了沉重的疾病负担。迄今,对HPIV-3感染的预防和治疗都还没有有效的疫苗和药物,因此WHO将HPIV-3疫苗列为未来重点研发的疫苗。近年来,随着重组技术和反向遗传学的发展,HPIV-3疫苗的研制取得了重要进展,部分疫苗已进入临床评价阶段。就HPIV-3的生物学特性如病毒结构特征、复制过程、流行病学特征,以及近年来传统冷适应减毒活疫苗、亚单位疫苗、以反向遗传学为基础的新型减毒活疫苗的研制成果及临床试验进展作简要综述。  相似文献   

14.
Attachment of measles virus (MV) to its cellular receptor is mediated by the viral envelope glycoprotein hemagglutinin (H). H exists at the viral surface as a disulfide-linked dimer which may associate into a tetramer. We aimed to define regions of H essential for its homo-oligomerization. To delineate these more precisely, we have generated a series of H ectodomain truncation mutants and studied their abilities to form both homotypic complexes and heterotypic complexes with full-length H. We define a "minimal unit" which is sufficient for MV H dimerization as that encompassing residues 1 to 151. This unit forms both homodimers and heterodimers with full-length H protein, although neither is transported to the cell surface even in the presence of other MV proteins. We show that cysteine residues at positions 139 and 154 are both critical in mediating covalent dimerization, not only of the truncated H mutants but also of full-length MV H protein. Even those cysteine mutants unable to form covalent intermolecular interactions are biologically active, mediating the formation of syncytia, albeit at a reduced rate. We demonstrate that this impaired capacity to mediate cell-to-cell fusion is based mainly on a reduced transport rate of the mutant molecules to the cell surface, indicating a role for covalent intermolecular interactions in efficient transport of MV H dimers to the cell surface.  相似文献   

15.
Neutralizing and protective monoclonal antibodies (mAbs) were used to fine-map the highly conserved hemagglutinin noose epitope (H379-410, HNE) of the measles virus. Short peptides mimicking this epitope were previously shown to induce virus-neutralizing antibodies [El Kasmi et al. (2000) J. Gen. Virol.81, 729-735]. The epitope contains three cysteine residues, two of which (Cys386 and Cys394) form a disulfide bridge critical for antibody binding. Substitution and truncation analogues revealed four residues critical for binding (Lys387, Gly388, Gln391 and Glu395) and suggested the binding motif X7C[KR]GX[AINQ]QX2CEX5 for three distinct protective mAbs. This motif was found in more than 90% of the wild-type viruses. An independent molecular model of the core epitope predicted an amphiphilic loop displaying a remarkably stable and rigid loop conformation. The three hydrophilic contact residues Lys387, Gln391 and Glu395 pointed on the virus towards the solvent-exposed side of the planar loop and the permissive hydrophobic residues Ile390, Ala392 and Leu393 towards the solvent-hidden side of the loop, precluding antibody binding. The high affinity (Kd = 7.60 nm) of the mAb BH216 for the peptide suggests a high structural resemblance of the peptide with the natural epitope and indicates that most interactions with the protein are also contributed by the peptide. Improved peptides designed on the basis of these findings induced sera that crossreacted with the native measles virus hemagglutinin protein, providing important information about a lead structure for the design of more stable antigens of a synthetic or recombinant subunit vaccine.  相似文献   

16.
17.
The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5.  相似文献   

18.
19.
A novel Respirovirus was isolated from nasopharyngeal swab specimens from clinically normal laboratory guinea pigs, and was characterized and named caviid parainfluenza virus 3 (CavPIV-3). The CavPIV-3 is enveloped, is 100 to 300 nm in diameter, and has a characteristic 15-nm-diameter chevron-shaped virus ribonucleocapsid protein. Sequence analysis of the fusion glycoprotein of CavPIV-3 revealed it to be 94% identical to human and guinea pig parainfluenza 3 (PIV-3) viruses and 80% identical to bovine PIV-3. To determine whether CavPIV-3 causes clinical disease in laboratory guinea pigs and to compare the serologic response of guinea pigs to CavPIV-3 and to other paramyxoviruses, an infection study was performed, in which groups of guinea pigs were inoculated with CavPIV-3, Sendai virus, simian virus 5 (SV-5), murine pneumonia virus (PVM), or bovine PIV-3 virus. During the course of the study, guinea pigs were maintained in an infectious disease suite, housed in Micro-Isolator cages, and were only manipulated under a laminar flow hood. Clinical signs of disease were not observed in any of the paramyxovirus-inoculated guinea pigs during the eight-week course of the study, and histologic signs of disease were not evident at necropsy eight weeks after inoculation. Guinea pigs inoculated with CavPIV-3, Sendai virus, PVM, and bovine PIV-3 developed robust homologous or heterologous serologic responses. In contrast, guinea pigs inoculated with SV-5 developed modest or equivocal serologic responses, as assessed by use of an enzyme-linked immunosorbent assay. Further, use of the SV-5 enzyme-linked immunosorbent assay resulted in the highest degree of non-specific reactivity among all of the paramyxovirus assays. In summary, CavPIV-3 is a novel guinea pig Respirovirus that subclinically infects laboratory guinea pigs, resulting in a robust serologic response, but no observed clinical or histologic disease. The CavPIV-3 fusion glycoprotein gene sequence is available from GenBank as accession No. AF394241, and the CavPIV-3 virus is available from the American Type Culture Collection as accession No. DR-1547.  相似文献   

20.
The expression of chimeric proteins was performed for the localization of monoclonal antibody (MAb) epitopes and functional domains in the hemagglutinin (H) protein of measles virus. The fusion helper function of the H protein was ablated by a single amino acid substitution at residue 98. Loss of reactivity to MAb 79-XV-V17 and to MAbs 16-CD-11 and 80-II-B2 was attributed to substitutions between residues 211 and 291 and between 451 and 505, respectively. The 80-II-B2 MAb epitope also seemed to be within a domain required for hemadsorption and hemagglutination activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号