首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The following study set out to test the hypothesis that acute treatment with the selective serotonin reuptake inhibitor, fluoxetine, would result in a rise in circulating 5-HT levels and consequently a decrease in territorial aggression in the Gulf toadfish, Opsanus beta. Size-matched pairs of toadfish were implanted intraperitoneally with the same dose of fluoxetine (0, 10 or 25 μg g− 1). After a social interaction between a pair of fish, circulating levels of serotonin (5-HT; 5-hydroxytryptamine) and cortisol were measured and relative mRNA expression of the 5-HT1A receptor in the toadfish brain was determined using quantitative (real-time) PCR (qPCR). Behavioral endpoints such as the number of aggressive acts and swimming activity were also quantified so that dominant and subordinate fish could be identified. Fluoxetine treatment resulted in an increase in circulating levels of 5-HT, regardless of social status. Circulating cortisol concentrations were unaffected by fluoxetine, but were significantly higher in subordinate individuals when compared to dominant fish. Toadfish brain 5-HT1A receptor mRNA expression was not affected by treatment or social status. Lastly and contrary to our predictions, fluoxetine treatment resulted in an increase in the number of aggressive acts made by dominant individuals, with no differences in the level of aggression or swimming activity of subordinate fish. This study is the first to describe elevated aggression in a teleost fish with elevated circulating levels of 5-HT.  相似文献   

3.
Cortisol release from fish head kidney during the acute phase of the stress response is controlled by the adrenocorticotropic hormone (ACTH) from the pituitary pars distalis (PD). Alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin, from the pars intermedia (PI), have been implicated in cortisol release during the chronic phase. The present study addresses the regulation of cortisol release by ACTH and alpha-MSH in common carp (Cyprinus carpio) and includes characterization of their receptors, namely, the melanocortin-2 and melanocortin-5 receptors (MC2R and MC5R). We could not demonstrate corticotropic activity of alpha-MSH, beta-endorphin, and combinations of these. We do show a corticotrope in the PI, but its identity is as yet uncertain. Carp restrained for 1 and 7 days showed elevated plasma cortisol and alpha-MSH levels; cortisol is still elevated but lower at day 7 than day 1 of restraint. Interrenal response capacity is unaffected, as estimated by stimulation with a maximum dose ACTH in a superfusion setup. MC2R and MC5R appear phylogenetically well conserved. MC2R is predominantly expressed in head kidney; a low abundance was found in spleen and kidney. MC5R is expressed in brain, pituitary PD, kidney, and skin. Quantitative PCR analysis of MC2R and MC5R expression in the head kidney of restrained fish reveals MC2R mRNA downregulation after 7 days restraint, in line with lower plasma cortisol levels seen. We discuss regulation of corticosteroid production from a phylogenetic perspective. We propose that increased levels of alpha-MSH exert a positive feedback on hypothalamic corticotropin-releasing hormone release to sustain a mild stress axis activity.  相似文献   

4.
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.  相似文献   

5.
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.  相似文献   

6.
Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly.  相似文献   

7.
The FK506 binding protein 51 or FKBP5 has been implicated in the regulation of glucocorticoid receptor (GR) sensitivity, and genetic variants in this gene have been associated with mood and anxiety disorders. GR resistance and associated stress hormone dysregulation are among the most robust biological findings in major depression, the extent of which may be moderated by FKBP5 polymorphisms. FKBP5 mRNA expression in peripheral blood cells (baseline and following in vivo GR stimulation with 1.5 mg dexamethasone p.o.) was analyzed together with plasma cortisol, ACTH, dexamethasone levels and the FKBP5 polymorphism rs1360780 in 68 depressed patients and 87 healthy controls. We observed a significant (P = 0.02) interaction between disease status and FKBP5 risk allele carrier status (minor allele T) on GR‐stimulated FKBP5 mRNA expression. Patients carrying the risk T allele, but not the CC genotype, showed a reduced induction of FKBP5 mRNA. This FKBP5 polymorphism by disease status interaction was paralleled by the extent of plasma cortisol and ACTH suppression following dexamethasone administration, with a reduced suppression only observed in depressed patients carrying the T allele. Only depressed patients carrying the FKBP5 rs1360780 risk allele showed significant GR resistance compared with healthy controls, as measured by dexamethasone‐induced FKBP5 mRNA induction in peripheral blood cells and suppression of plasma cortisol and ACTH concentrations. This finding suggests that endocrine alterations in depressed patients are determined by genetic variants and may allow identification of specific subgroups .  相似文献   

8.
Altered activity of the hypothalamic pituitary adrenal (HPA) axis is one of the most commonly observed neuroendocrine abnormalities in patients suffering from major depressive disorder (MDD). Altered cortisol secretion can be found in as many as 80% of depressed patients. This observation has led to intensive clinical and preclinical research aiming to better understand the molecular mechanisms which underlie the alteration of the HPA axis responsiveness in depressive illness. Dysfunctional glucocorticoid receptor (GR) mediated negative feedback regulation of cortisol levels and changes in arginine vasopressin (AVP)/vasopressin V1b receptor and corticotrophin-releasing factor/CRF1 receptor regulation of adrenocotricotrophin (ACTH) release have all been implicated in over-activity of the HPA axis. Agents that intervene with the mechanisms involved in (dys)regulation of cortisol synthesis and release are under investigation as possible therapeutic agents. The current status of some of these approaches is described in this review. Special issue article in honor of George Fink.  相似文献   

9.
While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity.  相似文献   

10.
The aim for this study was to examine whether the F4 generation of two strains of rainbow trout divergent in their plasma cortisol response to confinement stress (HR: high responder or LR: low responder) would also differ in stress-induced effects on forebrain concentrations of mRNA for corticotropin-releasing factor (CRF), arginine vasotocin (AVT), CRF receptor type 1 (CRF-R1), CRF receptor type 2 (CRF-R2) and AVT receptor (AVT-R). In addition, plasma cortisol concentrations, brainstem levels of monoamines and monoamine metabolites, and behaviour during confinement were monitored. The results confirm that HR and LR trout differ in their cortisol response to confinement and show that fish of these strains also differ in their behavioural response to confinement. The HR trout displayed significantly higher locomotor activity while in confinement than LR trout. Moreover, following 180 min of confinement HR fish showed significantly higher forebrain concentrations of CRF mRNA than LR fish. Also, when subjected to 30 min of confinement HR fish showed significantly lower CRF-R2 mRNA concentrations than LR fish, whereas there were no differences in CRF-R1, AVT or AVT-R mRNA expression between LR and HR fish either at 30 or 180 min of confinement. Differences in the expression of CRF and CRF-R2 mRNA may be related to the divergence in stress coping displayed by these rainbow trout strains.  相似文献   

11.
Relatively little is known about serotonergic involvement in pair-bonding despite its putative role in regulating social behavior. Here we sought to determine if pharmacological elevation of serotonin 1A (5-HT1A) receptor activity would lead to changes in social behavior in pair-bonded male titi monkeys (Callicebus cupreus). Adult males in established heterosexual pairs were injected daily with the selective 5-HT1A agonist 8-OH-DPAT or saline for 15 days using a within-subjects design. Social behavior with the female pair-mate was quantified, and plasma concentrations of oxytocin, vasopressin, and cortisol were measured. When treated with saline, subjects showed reduced plasma oxytocin concentrations, while 8-OH-DPAT treatment buffered this decrease. Treatment with 8-OH-DPAT also led to decreased plasma cortisol 15 minutes post-injection and decreased social behavior directed toward the pair-mate including approaching, initiating contact, lipsmacking, and grooming. The reduction in affiliative behavior seen with increased activity at 5-HT1A receptors indicates a substantial role of serotonin activity in the expression of social behavior. In addition, results indicate that the effects of 5-HT1A agonism on social behavior in adulthood differ between rodents and primates.  相似文献   

12.
In social animals, hierarchical rank governs food availability, territorial rights and breeding access. Rank order can change rapidly and typically depends on dynamic aggressive interactions. Since the neuromodulator corticotrophin releasing factor (CRF) integrates internal and external cues to regulate the hypothalamic-pituitary adrenal (HPA) axis, we analyzed the CRF system during social encounters related to status. We used a particularly suitable animal model, African cichlid fish, Astatotilapia burtoni, whose social status regulates reproduction. When presented with an opportunity to rise in rank, subordinate A. burtoni males rapidly change coloration, behavior, and their physiology to support a new role as dominant, reproductively active fish. Although changes in gonadotropin-releasing hormone (GnRH1), the key reproductive molecular actor, have been analyzed during social ascent, little is known about the roles of CRF and the HPA axis during transitions. Experimentally enabling males to ascend in social rank, we measured changes in plasma cortisol and the CRF system in specific brain regions 15 minutes after onset of social ascent. Plasma cortisol levels in ascending fish were lower than subordinate conspecifics, but similar to levels in dominant animals. In the preoptic area (POA), where GnRH1 cells are located, and in the pituitary gland, CRF and CRF1 receptor mRNA levels are rapidly down regulated in ascending males compared to subordinates. In the Vc/Vl, a forebrain region where CRF cell bodies are located, mRNA coding for both CRFR1 and CRFR2 receptors is lower in ascending fish compared to stable subordinate conspecifics. The rapid time course of these changes (within minutes) suggests that the CRF system is involved in the physiological changes associated with shifts in social status. Since CRF typically has inhibitory effects on the neuroendocrine reproductive axis in vertebrates, this attenuation of CRF activity may allow rapid activation of the reproductive axis and facilitate the transition to dominance.  相似文献   

13.
14.
A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expected birth (days -3 and -1), as well as day 1, 3, 5 and 113 (age matched with Sham and HF) after birth. Hearts from post-infarction HF and sham-operated animals (Sham) were also collected. Heart tissue was examined for mRNA expression of 5-HT4, 5-HT2A and 5-HT2B serotonin receptors, 5-HT transporter, atrial natriuretic peptide (ANP) and myosin heavy chain (MHC)-α and MHC-β (real-time quantitative RT-PCR) as well as 5-HT-receptor-mediated increase in contractile function ex vivo (electrical field stimulation of ventricular strips from foetal and neonatal rats and left ventricular papillary muscle from adult rats in organ bath). Both 5-HT4 mRNA expression and functional responses were highest at day -3 and decreased gradually to day 5, with a further decrease to adult levels. In HF, receptor mRNA levels and functional responses reappeared, but to lower levels than in the foetal ventricle. The 5-HT2A and 5-HT2B receptor mRNA levels increased to a maximum immediately after birth, but of these, only the 5-HT2A receptor mediated a positive inotropic response. We suggest that the 5-HT4 receptor is a representative of a foetal cardiac gene program, functional in late foetal development and reactivated in heart failure.  相似文献   

15.
Corticotropin-releasing factor (CRF) is a major regulatory peptide in the hypothalamic-pituitary-adrenal (HPA) axis under stress conditions. In response to stress, CRF, produced in the hypothalamic paraventricular nucleus, releases adrenocorticotropic hormone (ACTH) from the anterior pituitary (AP). ACTH in turn stimulates the release of glucocorticoid from the adrenal glands. Glucocorticoid then inhibits hypothalamic production of CRF and pituitary production of ACTH. Mice lacking a functional gene for CRF (CRF KO) showed severe impairment of the HPA axis, indicating that CRF is required for its regulation. We applied oligonucleotide microarray analysis to the AP of CRF KO to identify gene expression induced by CRF. Twenty-four genes showed less than 60% expression in CRF KO compared with normal mice. Real-time PCR analysis revealed that p21-activated kinase 3 (Pak3), prohormone convertase type 1 (PC1), and CRF-binding protein (BP) mRNA expression levels were increased by CRF in AP cells. Both Pak3 and PC1 were also increased by dexamethasone in AP cells, while CRF-BP mRNA levels were reduced. Therefore, both Pak3 and PC1 mRNA levels would be regulated by both CRF and glucocorticoids. Pak3 knockdown inhibited CRF-induced cell viability in AtT-20 cells, suggesting the important role of Pak3 in the proliferation of corticotrophs.  相似文献   

16.
In a significant proportion of patients with acromegaly, a non-specific increase in plasma growth hormone (GH) has been recognized following administration of thyrotropin-releasing hormone (TRH) or luteinizing hormone-releasing hormone (LH-RH), probably due to the lack of the specificity of the receptor in their tumor cells. In this study, the effects of corticotropin-releasing factor (CRF), a newly isolated hypothalamic hormone, in addition to TRH and LH-RH, on plasma levels of GH and the other anterior pituitary hormones were evaluated in 6 patients with acromegaly. Synthetic ovine CRF (1.0 microgram/kg), TRH (500 micrograms) or LH-RH (100 micrograms) was given as an iv bolus injection, in the morning after an overnight fast. Blood specimens were taken before and after injection at intervals up to 120 min, and plasma GH, adrenocorticotropin (ACTH), thyrotropin, prolactin, luteinizing hormone, follicle-stimulating hormone and cortisol were assayed by radioimmunoassays. A non-specific rise in plasma GH was demonstrated following injection of TRH and LH-RH, in 5 of 6 and 2 of 5 patients, respectively. In all subjects, rapid rises were observed in both plasma ACTH (34.3 +/- 6.2 pg/ml at 0 min to 79.5 +/- 9.5 pg/ml at 30 min, mean +/- SEM) and cortisol level (9.1 +/- 1.3 micrograms/dl at 0 min to 23.4 +/- 1.2 micrograms/dl at 90 min). However, plasma levels of GH and the other anterior pituitary hormones did not change significantly after CRF injection. These results indicate that CRF specifically stimulates ACTH secretion and any non-specific response of GH to CRF appears to be an infrequent phenomenon in this disorder.  相似文献   

17.
Abstract

In order to set up the technique of semi-quantitative in situ hybridisation to detect the serotonin receptor mRNA levels in brain tissue, a panel of three Swiss 3T3 cell clones (named clones 66, 53 and 47) expressing the human 5-HT1A receptor at different densities were used as a model. The clones were generated by limiting dilution from pools of stably transfected cells. In addition membranes were prepared from each clone to perform receptor binding studies. Clones 66, 53, and 47 showed saturable binding for the agonist [3H]-8-OHDPAT, with receptor densities (Bmax) of 227 ± 86, 548 ± 107 and 1505 ± 212 fmol/mg protein respectively, and with corresponding affinity constants (pKd) of 8.8 ± 0.1, 9.1 ± 0.1, and 9.1 ± 0.1 nM, respectively. Northern blot analysis using a specific probe for the 5-HTIA receptor revealed the presence of a single 1.56 kilobase mRNA species in the 5-HT1A receptor clones but not in control cells. In situ hybridisation studies were performed by measuring the 5-HT1A receptor mRNA levels in these three 5-HT1A transfectants using [35S]αCTP labeled riboprobes (sense and anti-sense). The following rank order of receptor mRNA expression was found for clones 66, 53 and 47 respectively: 0.140 ± 0.001, 0.365 ± 0.045 and 0.835 ± 0.115 (relative optical density units). With the sense probe no specific labelling was observed. In conclusion, a positive correlation was found between receptor density (Bmax) and receptor mRNA expression (semi-quantitative in situ hybridisation) using human 5-HT1A receptor clones with different expression levels.  相似文献   

18.
We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.  相似文献   

19.
A stimulation test with 100 micrograms ovine or human corticotropin-releasing factor (CRF) is a useful diagnostic tool in diseases of the hypothalamo-pituitary-adrenal axis. No serious side effects were observed during the test procedure. The results showed that the CRF test is useful in making the differential diagnosis of established Cushing's syndrome (n = 42). The CRF test was also repeated after transsphenoidal surgery in 25 patients with Cushing's disease. Successfully operated patients exhibit no, blunted or normal adrenocorticotropic hormone (ACTH) responses to CRF (n = 15), whereas patients who did not show remission remained hyperresponsive (n = 10). In patients with autonomous adrenal cortisol secretion, the ACTH response to CRF was suppressed (n = 10). After surgery the ACTH response to CRF can already be demonstrated when cortisol levels are still undetectable. Pulsatile administration of CRF in one patient after unilateral adrenalectomy and another patient under corticoid therapy revealed that ACTH responses to CRF normalize rapidly but cannot be sustained if CRF administration is withdrawn, suggesting that the cause of adrenal failure after unilateral adrenalectomy for Cushing's syndrome or long-term corticoid therapy is due to hypothalamic CRF deficiency. The decrease of the ACTH responses to CRF in glucocorticoid-treated patients correlated directly to the daily corticoid dosage. Since the ACTH hyperresponse to CRF in 6 patients with Cushing's disease was also suppressed by short-term dexamethasone treatment, the pituitary level as target site for the acute feedback inhibition is also demonstrated. The evaluation of the CRF-induced ACTH response in patients with secondary adrenal failure without detectable pathology in the sella and suprasellar region (n = 6) enables the differentiation between hypothalamic and pituitary adrenal insufficiency. In patients with hypothalamic lesions the ACTH response to CRF was normal whereas insulin hypoglycemia failed to induce an ACTH rise.  相似文献   

20.
Synthetic oCRF was intravenously injected into 3 groups of 5 chronically cannulated ovine fetuses in utero on days 120, 130 and 137 of gestation (10 micrograms/fetus). The respective twin fetuses were used as controls. Ovine CRF was also intravenously injected into 4 groups of 6 lambs on days 1, 3, 7 and 20 after birth (5 micrograms/kg bw). Fetal plasma ACTH and cortisol concentrations increased significantly following oCRF as early as 120 days of gestation without changing maternal plasma cortisol concentrations. The ACTH and cortisol response to CRF increased gradually on stages 130 and 137 of gestation, but on the other hand, plasma aldosterone did not change. In newborns, after oCRF, the pituitary response gave peak values at 10 min for plasma ACTH and adrenal response gave peak values at 15 min for plasma cortisol. Between 1 and 20 days, plasma ACTH and cortisol changes after oCRF decreased in older animals while aldosterone level remained unchanged. In animals receiving both treatments on days 1 and 20, plasma cortisol levels were increased for longer than in animals treated once.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号