首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1997,192(2):261-270
We have isolated and sequenced a genomic clone for a pancreatic α-amylase gene (amy) of the chicken (Gallus gallus). The gene is interrupted by nine introns, spans over 4 kb, and encodes a protein (AMY) of 512 aa that is 83% identical to the human pancreatic α-amylase enzyme. Southern blot analysis of chicken DNA revealed two distinct pancreatic amy loci. In addition, we have generated a cDNA from chicken pancreatic RNA corresponding to the coding sequence of the genomic clone. The cDNA was inserted into a yeast expression vector, and the resulting construct used to transform Saccharomyces cerevisiae cells. Transformed yeast cells synthesized and secreted active AMY enzyme, and the gel migration pattern of the α-amylase produced by the yeast cells was identical to that of the native chicken enzyme.  相似文献   

2.
A method is described for obtaining transgenic plants with a high level of expression of the introduced gene. Tobacco protoplasts were transformed with an expression construct containing a translational fusion between mature -amylase from Bacillus licheniformis and the signal peptide of the tobacco PR-S protein. A total number of 5200 transformed protoplasts was cultured to microcalli and screened for -amylase expression by incubation on media containing starch followed by staining with iodine. The calli were divided into four classes, based on the resulting halo sizes on the plates. The halo sizes were found to correlated with the expression levels in transgenic plants regenerated from the calli. The expression levels varied between 0 and 0.5% of soluble leaf protein in the regenerated transgenic plants. Wider implications of this method are discussed.  相似文献   

3.
Intraspecific variation of -amylase activity in D. melanogaster and D. immigrans, which is distantly related to D. melanogaster, and interspecific variation of -amylase activity in 18 Drosophila species were examined. The amount of intraspecific variation of -amylase activities measured in terms of coefficient of variation in D. melanogaster and D. immigrans was one-half and one-tenth or less, respectively, of the interspecific variation in 18 Drosophila species. We also surveyed the response patterns of -amylase activity to dietary carbohydrates at the larval and adult stages. The levels of -amylase activity depended on both repression by dietary glucose (glucose repression) and induction by dietary starch (starch induction). In general, our data suggest that glucose repression was conserved among species at both stages while starch induction was mainly observed in larvae, although the degree of the response depended on species. In D. lebanonensis lebanonensis and D. serrata, larvae expressed electrophoretically different -amylase variants (isozymes) from those of adult flies. These results may suggest that the regulatory systems responsible both for the response to environment and developmental expression are different among species in Drosophila. Correspondence to: T. Yamazaki  相似文献   

4.
5.
Anorganism,S.cerevisiaewidelyusedinbrewing,bakingandinethanolproductionprocessesisnotabletohydrolysestarch.ThusthetraditionalconversionofstarchintoethanolandCO2dependsontheadditionoftheenzymespriortofermentation,whichleadstoliquificationandsaccharificat…  相似文献   

6.
An 8.4 kb Sau3AI DNA fragment containing the Streptomyces rimosus TM-55 -amylase gene (amy) was ligated to a vector pIJ702, named pCYL01, and cloned into amylase deficient mutant S. lividans M2 (amy ). Subcloning study showed that the amy gene was localized in 3.3 kbKpnI-PstI fragment. The molecular weight of the purified -amylases of S. lividans M2/pCYL01 and S. rimosus TM-55 were estimated to be 65.7 kDa. Different sizes of recombinant plasmids carrying the amy gene had been retransferred into the parental strain of S. rimosus TM-55. Among these S. rimosus transformants, TM-55/pCYL01, TM-55/pCYL12 and TM-55/pCYL36 showed amylase activity 1.36- to 2.05-fold at the seventh day (1.61 to 2.42 units vs 1.18 units), and oxytetracycline (OTC) production 2.00- to 2.50-fold at the ninth day (approximate 140 to 170 g ml–1 vs 72 g ml–1), higher than that of S. rimosus TM-55 alone, respectively. These results showed that industrial microorganisms could be improved by genetic and metabolic engineering.  相似文献   

7.
The gene from Bacillus licheniformis coding for a thermostable -amylase was subcloned into the broad-host-range plasmid pKT210 in Escherichia coli. The recombinant plasmid pGNB6 was transferred into Zymomonas mobilis ATCC 31821 by conjugation. Plasmid pGNB6 was stably maintained in E. coli and unstable in Z. mobilis. The amylase gene was expressed in Z. mobilis at a lower level (25%) than in E. coli and regulation of enzyme biosynthesis was different in the host cells. Almost all the -amylase activity was recovered in the culture medium of Z. mobilis. This enzyme localization seemed to be the result of protein secretion rather than cell lysis. Integration of the amylase gene into a cryptic plasmid of Z. mobilis was observed. The amylase gene was still expressed, although at a lower level, and the -amylase activity, associated with a protein of molecular mass 62,000 daltons, was immunologically identical in Z. mobilis, E. coli and B. licheniformis.  相似文献   

8.
Genetic engineering is widely used to meliorate biological characteristics of industrial brewing yeast. But how to solve multiple problems at one time has become the bottle neck in the genetic modifications of industrial yeast strains. In a newly constructed strain TYRL21, dextranase gene was expressed in addition of α-amylase to make up α-amylase’s shortcoming which can only hydrolyze α-1,4-glycosidic bond. Meanwhile, 18s rDNA repeated sequence was used as the homologous sequence for an effective and stable expression of LSD1 gene. As a result, TYRL21 consumed about twice much starch than the host strain. Moreover TYRL21 speeded up the fermentation which achieved the maximum cell number only within 3 days during EBC tube fermentation. Besides, flavor evaluation comparing TYRL21 and wild type brewing strain Y31 also confirmed TYRL21’s better performances regarding its better saccharides utilization (83% less in residual saccharides), less off-flavor compounds (57% less in diacetyl, 39% less in acetaldehyde, 67% less in pentanedione), and improved stability index (increased by 49%) which correlated with sensory evaluation of final beer product.  相似文献   

9.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

10.
11.
We have introduced the α-amylase gene from Bacillus licheniformis (amy gene) in a non-replicative plasmid which can be conveniently integrated and amplified at a specific site of the B. subtilis chromosome. Although we were able to select spontaneous and stable gene amplification of about 20 integrated copies, the amylase secretion remained very low. A DNA fragment presenting a high promoter activity in B. subtilis was therefore inserted upstream from the amy gene coding sequence, leading to a significant increase of amylase production. However, the amplified structures obtained with this construction were found to contain no more than 12 copies of the amy gene and to be rather unstable when cells were grown under non-selective conditions.  相似文献   

12.
13.
Efficient production of recombinant barley α-amylase has been achieved in Aspergillus niger. The cDNA encoding α-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for α-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44 960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley α-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol β-d-maltoheptaoside and amylose (degree of polymerisation = 17). Barley α-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. Received: 22 August 1997 / Received revision: 21 November 1997 / Accepted: 29 November 1997  相似文献   

14.
15.
A new gene encoding an -amylase has been cloned, sequenced and expressed in E. coli from an alkaliphilic Pseudomonas sp. KFCC10818. The structural gene is 1356 base pairs long and encodes a protein of 452 amino acids. The recombinant -amylase has been purified and biochemically characterized. Molecular mass of the protein deduced from SDS-PAGE was 50 kDa. The enzyme showed an activity optimum at pH 8 and at 40 °C with complete stability at pH 13 for 3 h. The enzyme released maltose and maltotriose on hydrolysis of soluble starch. Amylose was hydrolysed over 5 times faster than amylopectin by the enzyme while the hydrolysis of cyclodextrin or pullulan was negligible.  相似文献   

16.
The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3′UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.  相似文献   

17.
Summary Within plasmid pUB110 we have identified a 1.2 kb segment necessary and sufficient for driving autonomous replication in Rec+ cells at a wild-type copy number. This region can be divided into three functionally discrete segments: a 24 base pair (bp) region that acts as an origin, a 949 bp determinant of an essential replication protein, repU, and a 358 bp incompatibility region, incA, overlapping with the repU gene. The synthesis of the IncA determinant/s proceeds in the direction opposite to that of RepU. The positively (RepU) and negatively (IncA) trans-acting products seem to be involved in the control of plasmid replication. The RepU product has an Mr of 39 kDa, could be overproduced in Escherichia coli, and binds to the pUB110 origin region. Outside the minimal replicon a cis-acting, orientation dependent, 516 bp determinant is required (i) to compete with a coexisting incompatible plasmid and (ii) for segregational stability.  相似文献   

18.
Expression of two genes in the -amylase gene family is controlled by metabolic regulation in rice cultured cells. The levels of RAmy3D and RAmy3E mRNAs in rice cultured cells are inversely related to the concentration of sugar in the culture medium. Other genes in the rice -amylase gene family have little or no expression in cultured cells; these expression levels are not controlled by metabolic regulation. A RAmy3D promoter/GUS gene fusion was metabolically regulated in the transgenic rice cell line 3DG, just as the endogenous RAmy3D gene is regulated. An assay of GUS enzyme activity in 3DG cells demonstrated that RAmy3D/GUS expression is repressed when sugar is present in the culture medium and induced when sugar is removed from the medium. The 942 bp fragment of the RAmy3D promoter that was linked to the coding region of the GUS reporter gene thus contains all of the regulatory sequences necessary for metabolic regulation of the gene.  相似文献   

19.
Steady-state levels of mRNA from individual -amylase genes were measured in the embryo and aleurone tissues of rice (Oryza sativa) and two varieties of barley (Hordeum vulgare L. cv. Himalaya and cv. Klages) during germination. Each member of the -amylase multigene families of rice and barley was differentially expressed in each tissue. In rice, -amylase genes displayed tissue-specific expression in which genes RAmy3B, RAmy3C, and RAmy3E were preferentially expressed in the aleurone layer, genes RAmy1A, RAmy1B and RAmy3D were expressed in both the embryo and aleurone, and genes RAmy3A and RAmy2A were not expressed in either tissue. Whenver two or more genes were expressed in any tissue, the rate of mRNA accumulation from each gene was unique. In contrast to rice, barley -amylase gene expression was not tissue-specific. Messenger RNAs encoding low- and high-pI -amylase isozymes were detectable in both the embryo and aleurone and accumulated at different rates in each tissue. In particular, peak levels of mRNA encoding high-pI -amylases always preceded those encoding low-pI -amylases. Two distinct differences in -amylase gene expression were observed between the two barley varieties. levels of high-pI -amylase mRNA peaked two days earlier in Klages embryos than in Himalaya embryos. Throughout six days of germination, Klages produced three times as much high-pI -amylase mRNA and nearly four times as much low-pI -amylase mRNA than the slower-germinating Himalaya variety.  相似文献   

20.
Summary The -amylase gene of Bacillus amyloliquefaciens was integrated into the genome of Bacillus subtilis by homologous recombination. In the first transformation step, several strains were obtained carrying the -amylase gene as two randomly located copies. These strains produced -amylase in the quantities comparable with that of the multicopy plasmid pKTH10, carrying the same -amylase gene. With the plasmid system, however, the rate of the -amylase synthesis was faster and the production phase shorter than those of the chromosomally encoded -amylase. The two chromosomal gene copies were further multiplied either by amplification using increasing antibiotic concentration as the selective pressure or by performing a second transformation step, identical to the first integration procedure. Both methods resulted in integration strains carrying up to eight -amylase gene copies per one genome and producing up to eightfold higher -amylase activity than the parental strains. Six out of seven transformants, studied in more detail, were stable after growth of 42 h even without antibiotic selection. The number of the DNA and mRNA copies of the -amylase gene was quantitavely determined by sandwich hybridization techniques, directly from culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号