首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO2, respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb’s cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.  相似文献   

2.
Rates of protein synthesis are substantially depressed in diapause II embryos of Austrofundulus limnaeus. Inhibition of oxygen consumption and heat dissipation with cycloheximide indicates that 36% of the adenosine triphosphate (ATP) turnover in prediapausing embryos (8 d postfertilization [dpf]) is caused by protein synthesis; the contribution of protein synthesis to ATP turnover in diapause II embryos is negligible. In agreement with the metabolic data, incorporation of amino acids (radiolabeled via (14)CO(2)) into perchloric acid-precipitable protein decreases by over 93% in diapause II embryos compared with embryos at 8 dpf. This result represents a 36% reduction in energy demand because of depression of protein synthesis during diapause. Adjusting for changes in the specific radioactivity of the free amino acid pool at the whole-embryo level yields rates of protein synthesis that are artifactually high and not supportable by the observed rates of oxygen consumption and heat dissipation during diapause. This result indicates a regionalized distribution of labeled amino acids likely dictated by a pattern of anterior to posterior cell cycle arrest. AMP/ATP ratios are strongly correlated with the decrease in rates of protein synthesis, which suggests a role for adenosine monophosphate (AMP) in the control of anabolic processes. The major depression of protein synthesis during diapause II affords a considerable reduction in energy demand and extends the duration of dormancy attainable in these embryos.  相似文献   

3.
Embryos of the annual killifish Austrofundulus limnaeus can enter into a state of metabolic dormancy, termed diapause, as a normal part of their development. In addition, these embryos can also survive for prolonged sojourns in the complete absence of oxygen. Dormant embryos support their metabolism using anaerobic metabolic pathways, regardless of oxygen availability. Dormancy in diapause is associated with high ATP and a positive cellular energy status, while anoxia causes a severe reduction in ATP content and large reductions in adenylate energy charge and ATP/ADP ratios. Most cells are arrested in the G1/G0 phase of the cell cycle during diapause and in response to oxygen deprivation. In this paper, we review what is known about the physiological and biochemical mechanisms that support metabolic dormancy in this species. We also highlight the great potential that this model holds for identifying novel therapies for human diseases such as heart attack, stroke and cancer.  相似文献   

4.
Embryos of the annual killifish Austrofundulus limnaeus can enter into a state of metabolic dormancy, termed diapause, as a normal part of their development. In addition, these embryos can also survive for prolonged sojourns in the complete absence of oxygen. Dormant embryos support their metabolism using anaerobic metabolic pathways, regardless of oxygen availability. Dormancy in diapause is associated with high ATP and a positive cellular energy status, while anoxia causes a severe reduction in ATP content and large reductions in adenylate energy charge and ATP/ADP ratios. Most cells are arrested in the G1/G0 phase of the cell cycle during diapause and in response to oxygen deprivation. In this paper, we review what is known about the physiological and biochemical mechanisms that support metabolic dormancy in this species. We also highlight the great potential that this model holds for identifying novel therapies for human diseases such as heart attack, stroke and cancer.  相似文献   

5.
Embryos of the annual killifish Austrofundulus limnaeus can enter into dormancy associated with diapause and anoxia-induced quiescence. Dormant embryos are composed primarily of cells arrested in the G(1)/G(0) phase of the cell cycle based on flow cytometry analysis of DNA content. In fact, most cells in developing embryos contain only a diploid complement of DNA, with very few cells found in the S, G(2), or M phases of the cell cycle. Diapause II embryos appear to be in a G(0)-like state with low levels of cyclin D1 and p53. However, the active form of pAKT is high during diapause II. Exposure to anoxia causes an increase in cyclin D1 and p53 expression in diapause II embryos, suggesting a possible re-entry into the cell cycle. Post-diapause II embryos exposed to anoxia or anoxic preconditioning have stable levels of cyclin D1 and stable or reduced levels of p53. The amount of pAKT is severely reduced in 12?dpd embryos exposed to anoxia or anoxic preconditioning. This study is the first to evaluate cell cycle control in embryos of A. limnaeus during embryonic diapause and in response to anoxia and builds a foundation for future research on the role of cell cycle arrest in supporting vertebrate dormancy.  相似文献   

6.
Embryos of the annual killifish Austrofundulus limnaeus can experience oxygen deprivation as part of their normal developmental environment. We exposed embryos to anoxia and monitored heart activity for 48 hr, and subsequent aerobic recovery from anoxia for 40 hr. Embryos were tested at four different developmental stages that differ in their tolerance of anoxia. Our results indicate that high tolerance of anoxia is associated with an arrest of heart contractility during the first 24 hr of anoxia. These embryos recover to normoxic levels of heart rate within 16 hr of aerobic recovery. In contrast, embryos from later developmental stages that have a highly reduced ability to survive long-term anoxia experience a severe bradycardia but not an arrest of heart rate. These data illustrate a new and potentially powerful model for investigating the effects of anoxia on the developing cardiovascular system in vertebrates.  相似文献   

7.
Austrofundulus limnaeus thrive in ephemeral ponds that may experience temperatures spanning a range of over 20°C on a daily basis. We hypothesized that A. limnaeus may have mechanisms, either behavioral or physiological, that allow them to support successful reproduction in this environment. To evaluate this hypothesis, we exposed male and female adult A. limnaeus to constant 26°C and cycling 21–37°C acclimation regimes in the laboratory and then determined their temperature preference and reproductive fitness. Temperature preference was determined using a thermal gradient. We demonstrated that A. limnaeus is capable of accurate behavioral thermoregulation, has a final thermal preferendum near 26°C, and exhibits a daily cycle of temperature preference. Exposure to a cycling temperature regime has an acute effect on thermal preference that differs between the sexes. Reproductive capability was negatively affected by the cyclic temperature exposure. These findings suggest that thermal partitioning between males and females may be a natural part of the ecology of A. limnaeus. In addition, it appears that behavioral thermoregulation, or partitioning of reproductive events to the cool parts of the thermoperiod, are likely to be critical to support successful reproduction in natural populations of A. limnaeus.  相似文献   

8.
Embryos of Austrofundulus limnaeus are exceptional in their ability to tolerate prolonged bouts of complete anoxia. Hypoxia and anoxia are a normal part of their developmental environment. Here, we exposed embryos to a range of PO2 levels at two different temperatures (25 and 30 °C) to study the combined effects of reduced oxygen and increased temperature on developmental rate, heart rate, and metabolic enzyme capacity. Hypoxia decreased overall developmental rate and caused a stage-specific decline in heart rate. However, the rate of early development prior to the onset of organogenesis is insensitive to PO2. Increased incubation temperature caused an increase in the developmental rate at high PO2s, but hindered developmental progression under severe hypoxia. Embryonic DNA content in pre-hatching embryos was positively correlated with PO2. Citrate synthase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase capacity were all reduced in embryos developing under hypoxic conditions. Embryos of A. limnaeus are able to develop normally across a wide range of PO2s and contrary to most other vertebrates severe hypoxia is not a teratogen. Embryos of A. limnaeus do not respond to hypoxia through an increase in the capacity for enzymatic activity of the metabolic enzymes lactate dehydrogenase, citrate synthase, or phosphoenolpyruvate carboxykinase. Instead they appear to adjust whole-embryo metabolic capacity to match oxygen availability. However, decreased DNA content in hypoxia-reared embryos suggests that cellular enzymatic capacity may remain unchanged in response to hypoxia, and the reduced capacity may rather indicate reduced cell number in hypoxic embryos.  相似文献   

9.
The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of northern South America, where they survive the periodic drying of their habitat as diapausing embryos. These diapausing embryos are highly resistant to a number of environmental insults such as high temperature, dehydration, anoxia, and increased salinity. Molecular chaperones are known to play a role in stabilizing protein structure and function during events of cellular stress. Relative levels of heat shock protein (Hsp)70 were measured in developing and diapausing embryos of A. limnaeus using quantitative Western blots. An inducible or embryo-specific form of Hsp70 is expressed during embryonic development in A. limnaeus and is elevated during diapause II in this species. Constitutive expression of Hsp70 during development may afford these embryos protection from environmental stresses during development more quickly than relying on the induction of a classic heat shock response.  相似文献   

10.
Annual killifish development is unique compared to other teleosts and is characterized by the dispersion and subsequent reaggregation of pre-embryonic blastomeres and the occurrence of embryonic diapause. Austrofundulus limnaeus is an excellent species to use for studies of development and embryonic diapause in annual killifish. A. limnaeus has a high fecundity, reproduces readily in a laboratory environment, and has a relatively long laboratory life span compared to many other species of annual killifish. Methods are presented for rearing A. limnaeus in the laboratory with an emphasis on collecting and incubating large numbers of embryos for biochemical and physiological studies. Females produce an average of 29 eggs during a two to four hour spawning. Egg quality (% fertilization and survival) and egg production (eggs female-1) are affected by the number of days between spawning events. Percent fertilization of eggs and survival of embryos decreases as the interval between spawning increases from two to eight days. The number of fertile embryos produced per female remains relatively constant as a function of spawning interval. Fertilization rates may be maintained at high levels by replacing aged males (1.5 years old) with younger males. An embryo medium was formulated to mimic the natural waters inhabited by A. limnaeus. The developmental rate and survival of embryos in the embryo medium was essentially equivalent when compared to Yamamoto's fish saline solution.  相似文献   

11.
Highly significant changes were found in digenean metacercariae infected gills of killifish Fundulus heteroclitus with respect to gill abnormalities. Gills infected with >1000 metacercariae exhibited up to 42 additional gill branches per fish when compared to less parasitized conspecifics. A strong positive correlation was found between abnormal gill morphology (number of branches) and the number of endoparasites present.  相似文献   

12.
Mouse preimplantation embryo functions have been shown to be disrupted by in vitro exposure to N-methyl-N-nitrosourea (MNU) with subsequent transfer to the uteri of pseudopregnant surrogate mothers. Increased gross malformations and decreased fetal body lengths in the midgestational period have been previously documented. Protein extracts were isolated from day 12 mouse fetuses developed from MNU- or solvent-exposed blastocysts and analyzed by two-dimensional electrophoresis. The electrophoretic patterns reveal six protein alterations in day 12 fetal tissue induced by MNU treatment at the blastocyst stage. Five of these alterations involve shifts in isoelectric point (pI) and the other alteration involves a quantitative increase in a protein. The possibility that two of the proteins which exhibit a shift in pI following MNU exposure represent the cell adhesion molecules, N-CAM and L-CAM (based on similar Mr values), was investigated by Western blot analysis. No pI alteration in L-CAM or N-CAM expression is seen after MNU exposure. These results demonstrate that in vitro MNU exposure of preimplantation embryos results in protein alterations in midgestational fetuses. Thus, the effects of MNU exposure on preimplantation embryos may be manifest long after exposure, and subtle, non-lethal mutations may play a role in poor fetal outcome after early chemical exposure.  相似文献   

13.
14.
Temporary pools are seasonal wetland habitats with specifically adapted biota, including annual Nothobranchius killifishes that survive habitat desiccation as diapausing eggs encased in dry sediment. To understand the patterns in the structure of Nothobranchius assemblages and their potential in wetland conservation, we compared biodiversity components (alpha, beta, and gamma) between regions and estimated the role and sources of nestedness and turnover on their diversity. We sampled Nothobranchius assemblages from 127 pools across seven local regions in lowland Eastern Tanzania over 2 years, using dip net and seine nets. We estimated species composition and richness for each pool, and beta and gamma diversity for each region. We decomposed beta diversity into nestedness and turnover components. We tested nestedness in three main regions (Ruvu, Rufiji, and Mbezi) using the number of decreasing fills metric and compared the roles of pool area, isolation, and altitude on nestedness. A total of 15 species formed assemblages containing 1–6 species. Most Nothobranchius species were endemic to one or two adjacent regions. Regional diversity was highest in the Ruvu, Rufiji, and Mbezi regions. Nestedness was significant in Ruvu and Rufiji, with shared core (Nmelanospilus, Neggersi, and Njanpapi) and common (N. ocellatus and Nannectens) species, and distinctive rare species. Nestedness apparently resulted from selective colonization rather than selective extinction, and local species richness was negatively associated with altitude. The Nothobranchius assemblages in the Mbezi region were not nested, and had many endemic species and the highest beta diversity driven by species turnover. Overall, we found unexpected local variation in the sources of beta diversity (nestedness and turnover) within the study area. The Mbezi region contained the highest diversity and many endemic species, apparently due to repeated colonizations of the region rather than local diversification. We suggest that annual killifish can serve as a flagship taxon for small wetland conservation.  相似文献   

15.
16.
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde‐3‐phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri‐phosphate during anoxia. In terms of neural protection, voltage‐dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase‐like protein‐3 and vesicle amine transport protein‐1. One protein was found to be increased by anoxia; pre‐proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.  相似文献   

17.
The neural mechanisms underlying recognition of familiar individuals and responses appropriate to them are not well known. Previous studies with male golden hamsters have shown that, after a series of brief aggressive encounters, a loser selectively avoids his own, familiar winner but does not avoid other males. Using this paradigm, we investigated activity in 20 areas of the brain using immunohistochemistry for c-Fos and Egr-1 during exposure to a familiar winner compared to control groups not exposed to another male. Behavioral data showed that 1 day after fights males that lost avoided the familiar winner, suggesting that they recognized this individual. The c-Fos and Egr-1 immunohistochemistry showed that the losers exposed to familiar winners had a greater density of stained cells in the basolateral amygdala, the CA1 region of anterior dorsal hippocampus and the dorsal subiculum than control groups had in these areas. These results suggest that these brain areas may be involved in the memory for other males, the learned fear of familiar winners, or related processes.  相似文献   

18.
19.
Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit desiccation resistant eggs that can undergo diapause, a period of developmental arrest, enabling them to traverse the otherwise inhospitable dry season. Environmental cues that potentially indicate the season can govern whether eggs enter a stage of diapause mid-way through development or skip this diapause and instead undergo direct development. We report, based on construction of a supermatrix phylogenetic tree of the order Cyprinodontiformes and a battery of comparative analyses, that the ability to produce diapause eggs evolved independently at least six times within African and South American killifish. We then show in species representative of these lineages that embryos entering diapause display significant reduction in development of the cranial region and circulatory system relative to direct-developing embryos. This divergence along alternative developmental pathways begins mid-way through development, well before diapause is entered, during a period of purported maximum developmental constraint (the phylotypic period). Finally, we show that entering diapause is accompanied by a dramatic reduction in metabolic rate and concomitant increase in long-term embryo survival. Morphological divergence during the phylotypic period thus allows embryos undergoing diapause to conserve energy by shunting resources away from energetically costly organs thereby increasing survival chances in an environment that necessitates remaining dormant, buried in the soil and surrounded by an eggshell for much of the year. Our results indicate that adaptation to seasonal aquatic environments in annual killifish imposes strong selection during the embryo stage leading to marked diversification during this otherwise conserved period of vertebrate development.  相似文献   

20.
Poly-ubiquitin chains targeting proteins for 26S proteasomal degradation are classically anchored on internal lysines of substrates via iso-peptide linkages. However recently, linkage of ubiquitin moieties to non-canonical nucleophilic residues, such as cysteines, serines and threonines, has been demonstrated in a small number of cases.Non-canonical ubiquitylation of the proneural protein Ngn2 has previously been seen in Xenopus egg extract, but it was not clear whether such highly unusual modes of ubiquitylation were restricted to the environment of egg cytoplasm. Here we show that Ngn2 is, indeed, ubiquitylated on non-canonical sites in extracts from neurula stage Xenopus embryos, when Ngn2 is usually active. Moreover, in the P19 mammalian embryonal carcinoma cell line capable of differentiating into neurons, xNgn2 is ubiquitylated on both canonical and non-canonical sites. We see that mutation of cysteines alone results stabilisation of the protein in P19 cells, indicating that non-canonical ubiquitylation on these residues normally contributes to the fast turnover of xNgn2 in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号