首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

2.
We report further analysis of axonally transported proteoglycans in soluble and membranous subfractions of goldfish optic tectum. Distribution of transported35SO4 radioactivity was 35.2% soluble, 63.4% Triton-NaCl extractable and 1.4% unextracted. Proteoglycans isolated on DEAE cellulose were treated with chondroitinase AC or nitrous acid and remaining heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) were sized on Sepharose CL-6B. Kav values and estimated molecular weights were: Soluble CSPG-0.36 (160 kDa), Triton-NaCl extracted CSPG-.031 (200 kDa), Soluble HSPG-0.37 (150 kDa), Triton-NaCl extracted HSPG-0.37 (150 kDa). For constituent CS and HS chains the Kav values and estimated molecular weights on CL-6B were: Soluble CS-0.55 (15 kDa), Triton-NaCl extracted CS-0.55 (15 kDa), Soluble HS-0.59 (13 kDa) and Triton-NaCl extracted HS-0.65 (9 kDa). CS was shown to be sulfated exclusively at carbon 4 for both soluble and Triton NaCl extracted fractions.  相似文献   

3.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

4.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The pericellular matrix fibers of cultured human fibroblasts contain fibronectin, other glycoproteins, and heparan and chondroitin sulfate proteoglycans. In the present study, cell-free pericellular matrices were isolated from metabolically labeled fibroblast cultures. The isolated matrices were digested with heparinase from Flavobacterium heparinum, and then analyzed for sulfated glycosaminoglycans (GAGs). Nitrous acid degradation was used to distinguish the N-sulfated GAGs (heparan sulfate) from chondroitin sulfate. Fibronectin and the other major matrix polypeptides were studied using gel electrophoresis, enzyme immunoassay and immunofluorescence. Upon heparinase digestion, greater than 95% of sulfated GAGs were degraded in the matrix without detectable release of fibronectin or other matrix polypeptides or alteration of the fibrillar matrix structure. We conclude that in fibroblast cultures the integrity of the fibrillar matrix is independent of sulfated GAGs. Together with earlier observations, this suggests that filamentous polymerization of fibronectin forms the backbone of early connective tissue matrix.  相似文献   

6.
Axonally transported proteoglycans were differentially solubilized by a sequence of extractions designed to infer their relationship to nerve terminal membranes. Groups of goldfish were injected unilaterally with35SO4 and contralateral optic tecta containing axonally transported molecules were removed 16 h later. Tecta were homogenized in isotonic buffer and centrifuged at 100,000g for 60 min to create a total supernatant fraction. Subsequent homogenizations followed by recentrifugation were with hypotonic buffer (lysis extract), 1 M NaCl, Triton X-100 or alternatively Triton-1 M NaCl. Populations of proteoglycans in each extract were isolated on DEAE ion exchange columns and evaluated for content of glycosaminoglycans (GAGs). Results show the distribution of transported proteoglycans to be 26.3% total soluble, 13.7% lysis extract, 13.8% NaCl extract, 12.2% Triton extract, and 46.2% Triton-NaCl extract. Proteoglycans from all fractions contained heparan sulfate as the predominant GAG, with lesser amounts of chondroitin (4 or 6) sulfate. The possible localizations of transported proteoglycans suggested by the extraction results are discussed.  相似文献   

7.
Proteoglycans were extracted from 14-day chick embryo brains, which had been labelled in vitro with [35S]sulfate or 3H-labelled amino acids. 4.0 M guanidinium chloride (containing proteinase inhibitors) extracted 94% of the 35S-labelled glycoconjugates. Following cesium chloride equilibrium centrifugation, the proteoglycans in each fraction were characterized by chromatography on Sepharose CL-2B. The most dense fraction (D1), which contained no detectable non-proteoglycan proteins, contained a large, aggregating chondroitin sulfate proteoglycan in addition to small chondroitin sulfate and heparan sulfate proteoglycans. The less dense fractions (D2-D6) contained both small chondroitin sulfate and heparan sulfate proteoglycans. Removal of hyaluronate from the D1 sample by digestion with Streptomyces hyaluronidase in the presence of proteinase inhibitors showed that aggregation of the large chondroitin sulfate proteoglycan is hyaluronate-dependent. Aggregation was restored by re-addition of hyaluronate. Reduction and alkylation, which blocked aggregation of a cartilage A1 proteoglycan, did not interfere with aggregation of the large brain proteoglycan.  相似文献   

8.
Link proteins are glycoproteins which stabilize aggregates of proteoglycans and hyaluronic acid in cartilage. We recently identified link proteins in canine synovial cell cultures. We now find that link proteins and proteoglycans extracted from these cells under dissociative conditions sediment in the high-buoyant-density fractions of an associative cesium chloride density gradient, suggesting that link proteins interact with high-bouyant-density proteoglycans. In gradients containing [35S]sulfate-labeled synovial cell extracts, 76% of the labeled sulfate and 54% of the uronic acid is found in the high-buoyant-density fractions. Under associative conditions, Sepharose 2B elution profiles of the crude synovial cell extract, synovial cell high-buoyant-density fractions, and culture medium indicate that synovial cell proteoglycans are present in monomeric form, rather than in aggregates. Synovial cell link proteins co-elute with the [35S]sulfate-labeled material under the same conditions. These proteoglycans do not interact in vitro with exogenous hyaluronic acid. Dermatan sulfate, chondroitin sulfate and heparan sulfate are the major cell-associated sulfated glycosaminoglycans synthesized by cultured canine synovial cells, while hyaluronic acid is found in the culture medium. Although the proteoglycans synthesized by cultured synovial cells interact with link proteins, these data indicate that they do not interact with hyaluronic acid to form aggregates.  相似文献   

9.
Human neuroblastoma cells (Platt) were detached from tissue culture substrata with a Ca2+ chelating agent, and then the suspended cells were extracted with a sodium dodecyl sulfate (SDS)-containing buffer to maximally solubilize their sulfate-radiolabeled proteoglycans. The majority of the high-molecular-weight material in these dissociative extracts was heparan sulfate proteoglycan, which resolves into two heterodisperse size classes upon gel filtration on columns of Sepharose CL4B. After removal of SDS from these extracts by hydrophobic chromatography on Sep-Pak C18 cartridges, extracts were further fractionated on various affinity matrices. All of the sulfate-radiolabeled material eluted as one peak from DEAE-Sephadex ion-exchange columns. In contrast, affinity fractionation on Sepharose columns derivatized with the heparan sulfate-binding protein, platelet factor-4, resolved three major and one minor subsets of these components. The nonbinding fraction contained some heparan sulfate proteoglycan and some chondroitin sulfate. The weak-binding fraction contained principally heparan sulfate proteoglycan, as well as a small amount of chondroitin sulfate proteoglycan; the gel-filtration properties of these proteoglycans before or after alkaline borohydride treatment indicated that they were small in size, containing perhaps 2 to 4 glycosaminoglycan chains. The high-affinity fraction eluted from platelet factor 4-Sepharose was composed entirely of “singlechain” heparan sulfate. A portion of the heparan sulfate proteoglycan of the original extract bound to the hydrophobic affinity matrix, octyl-Sepharose, and this hydrophobic proteoglycan partitioned into the nonbinding and weak-binding fractions of the platelet factor 4-Sepharose affinity columns. These studies reveal that the majority of the proteoglycan made by these neuronal cells in culture is of the heparan sulfate class, is small in size when compared to other characterized proteoglycans, and can be resolved into several overlapping subsets when fractionated on affinity matrices.  相似文献   

10.
Glycoconjugates secreted by bovine tracheal serous cells in culture   总被引:3,自引:0,他引:3  
Glycoconjugates secreted by bovine tracheal gland serous cells in culture were characterized after incorporation of radioactive precursor [1-14C]glucosamine and stimulation with isoproterenol. Under dissociative conditions, glycoconjugates eluted in both the void and included volumes on Sepharose Cl-4B. Fractionated by anion-exchange chromatography, the high-molecular-weight (Sepharose Cl-4B; V0) glycoconjugates gave two acidic fractions eluting at 0.5 and 2.0 M NaCl; low-molecular-weight glycoconjugates of the included volumes gave a neutral fraction and two acidic fractions eluting at 0.5 and 2.0 M NaCl. Based on chemical analysis and specific enzymatic digestions, the material eluting in the void volume was shown to contain hyaluronic acid and chondroitin sulfate proteoglycan. In addition, the presence of small amounts of galactose, fucose, sialic acid, glucosamine, and galactosamine suggest the presence of O-glycosidically linked glycoproteins in the void volume. The identification of galactosaminitol in beta-eliminated oligosaccharides from this material confirms this notion. The material eluting in the included volume was shown to contain N-linked glycoproteins with glycans of complex type in the neutral fraction and chondroitin sulfate proteoglycans in the two acidic fractions. Significant N-sulfation of amino sugars was detected in the 0.5 M acidic fraction, indicating the presence of heparan sulfate. Hyaluronic acid and chondroitin sulfate proteoglycan have recently been identified in tracheal secretions; our results suggest that these components originate at least in part from tracheal gland serous cells.  相似文献   

11.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

12.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

13.
Studies on isolated synaptic plasma membranes (SPM) have detected little if any heparan sulfate or other glycosaminoglycans (GAGs), while more recent studies employing proteoglycan antibodies have localized heparan sulfate proteoglycan in presynaptic plasma membrane of intact tissue. To further address the issue of proteoglycans in synaptic plasma membrane of intact tissue. To further address the issue of proteoglycans in synaptic plasma membrane, we have investigated the possible presence of axonally transported GAGs in SPM isolated from the goldfish optic tectum. SPMs isolated from tecta following rapid axonal transport of35SO4 labeled molecules down the optic nerve, showed specific radioactivity approximately two-fold higher than the starting homogenate. Treatment of the transport labeled SPM with the enzyme heparitinase liberated 21% of the radioactivity, indicating the presence of a significant fraction of trnasported label in heparan sulfate. In a separate series of experiments a GAG fraction was isolated from transport labeled SPM and was found to consist of heparan sulfate containing 28% of transported radioactivity. Chondroitin (4 or 6) sulfate, which undergoes axonal transport in the goldfish optic system, was not found associated with SPM. Taken together the results support immunological evidence for the presence of heparan sulfate proteoglycans in presynaptic plasma membrane.To whom to address reprint request..  相似文献   

14.
Mouse neuroblastoma Neuro 2a cells are known to extend neurite-like processes in response to gangliosides added to the culture medium. We compared the structural features of proteoglycans (PG) synthesized by conventional Neuro 2a cells with those of neurite-bearing cells. Two different proteoglycans labeled with [35S]sulfate, namely, chondroitin sulfate proteoglycan (CS-PG) and heparan sulfate proteoglycan (HS-PG), were found both in the cell layer and in the culture medium of the conventional cells. CS-PG isolated from the cell layer had a Kav value of 0.38 on Sepharose CL-6B, and had CS side chains with Mr of 27,000. HS-PG in the cell layer was slightly larger (Kav of 0.33) in terms of hydrodynamic size than CS-PG, and the apparent Mr of the heparan sulfate side chains was 10,000. The structural parameters of CS-PG and HS-PG isolated from the medium were almost identical to those of the PGs in the cell layer. In addition to these PGs, single-chain HS, with an average Mr of 2,500, was observed only in the cell layer and this component was the major sulfated component in the cell layers of both control and ganglioside treated cells. The neurite-bearing cells also synthesized both CS-PG and HS-PG which were very similar in hydrodynamic size to those synthesized by the conventional cells, but the size of HS side chains was greater. Radioactivity, as35S, of each sulfated component from the gangliosideteated culture seemed to be slightly less than that of the corresponding component from the control culture. These findings indicate that the marked morphological change in Neuro 2a cells, induced by gangliosides is not accompanied by major changes in the synthesis of PGs.  相似文献   

15.
Cultured smooth muscle cells from pig aorta arrested in G0 phase by serum deprivation were stimulated to proliferate by replacing the medium with one containing 10% serum. Studies in DNA replication and proliferation of cells showed a relatively good synchrony: 90% of the cells were in G1 phase for 16 h after addition of serum; they entered S phase between 18 and 24 h, completed S phase and traversed G2 phase between 24 and 30–32 h; 75% of these cells multiplied after 30–32 h and the remainder were blocked at the end of G2 phase. The synthesis and secretion of sulfated proteoglycans were examined throughout a full cell cycle using metabolic labelling with [35S]sulfate. Smooth muscle cells in G1 or G2 phase synthesized and secreted sulfated proteoglycans with a possible pause at the end of the G2 phase but at the beginning of the S phase and during mitosis the incorporation of [35S]sulfate into these macromolecules stopped entirely. Structural characteristics of sulfated proteoglycans secreted into the medium during G1 phase and an entire cell cycle were investigated. The proportion of proteoglycan complexes and the relative hydrodynamic size of monomers and of constituent subunits of complexes were determined after chromatography on Sepharose CL-2B and CL-6B columns run under both associative and dissociative conditions. No significant differences were observed for the periods of the cell cycle that were studied:
1. 1. [35S]Proteoglycan complexes represented at the end of G1 phase and of the cell cycle respectively 19 and 16% of the total [35S]proteoglycans secreted into the medium.
2. 2. More than 90% of the subunits, obtained after dissociation of complexes, were characterized by a similar kav after chromatography on Sepharose CL-2B columns eluted under dissociative conditions (kav 0.68 at the end of G1 phase and 0.65 at the end of full cell cycle).
3. 3. About 95% of monomers synthesized at the two stages of the cell cycle were eluted at kav 0.25 after chromatography on Sepharose CL-6B column run under associative conditions and were characterized by a similar glycosaminoglycan distribution. These results suggest that smooth muscle cells in culture liberate similar populations of proteoglycans into the medium during the G1 and G2 phases.
  相似文献   

16.
Cell surface glycosaminoglycans (GAGs) play an important role in the attachment and invasion process of a variety of intracellular pathogens. We have previously demonstrated that heparan sulfate proteoglycans (HSPG) mediate the invasion of trypomastigote forms of Trypanosoma cruzi in cardiomyocytes. Herein, we analysed whether GAGs are also implicated in amastigote invasion. Competition assays with soluble GAGs revealed that treatment of T. cruzi amastigotes with heparin and heparan sulfate leads to a reduction in the infection ratio, achieving 82% and 65% inhibition of invasion, respectively. Other sulfated GAGs, such as chondroitin sulfate, dermatan sulfate and keratan sulfate, had no effect on the invasion process. In addition, a significant decrease in infection occurred after interaction of amastigotes with GAG-deficient Chinese Hamster Ovary (CHO) cells, decreasing from 20% and 28% in wild-type CHO cells to 5% and 9% in the mutant cells after 2 h and 4 h of infection, respectively. These findings suggest that amastigote invasion also involves host cell surface heparan sulfate proteoglycans. The knowledge of the mechanism triggered by heparan sulfate-binding T. cruzi proteins may provide new potential candidates for Chagas disease therapy.  相似文献   

17.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

18.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

19.
Cytoadherence is an important step for the invasion of a mammalian host cell by Trypanosoma cruzi. Cell surface macromolecules are implicated in the T. cruzi-cardiomyocyte recognition process. Therefore, we investigated the role of cell surface proteoglycans during this invasion process and analyzed their expression after the parasite infected the target cells. Treatment of trypomastigote forms of T. cruzi with soluble heparan sulfate resulted in a significant inhibition in successful invasion, while chondroitin sulfate had no effect. Removal of sulfated glycoconjugates from the cardiomyocyte surface using glycosaminoglycan (GAG) lyases demonstrated the specific binding of the parasites to heparan sulfate proteoglycans. Infection levels were reduced by 42% whenthe host cells were previously treated with heparitinase II. No changes were detected in the expression of GAGs infected cardiomyocytes even after 96 h of infection. Our data demonstrate that heparan sulfate proteoglycans, but not chondroitin sulfate, mediate both attachment and invasion of cardiomyocytes by T. cruzi.  相似文献   

20.
Balb/c 3T3 cells synthesize 5–10 times more 35SO42?-labeled extracellular proteoglycan per cell than do Balb/c 3T3 cells transformed by SV40 (SV3T3). The extracellular 35SO42?-labeled proteoglycans of the Balb/c 3T3 and SV3T3 cells differ markedly in their acid mucopolysaccharide composition. Extracellular Balb/c 3T3 proteoglycans contain about 70–80% chondroitin sulfate, most of which is chondroitin 4-sulfate, and small amounts of heparan sulfate and/or heparin. On the other hand, extracellular SV3T3 proteoglycans contain 65–75% heparan sulfate and/or heparin and less than 15% chondroitin sulfate. Analysis of extracellular 35SO42?-labeled proteoglycan by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that Balb/c 3T3 alone synthesizes a class of proteoglycans capable of migrating in a 10% separating gel. This class of proteoglycans, designated as fraction C, accounts for up to 45% of the total extracellular Balb/c 3T3 35SO42?-labeled proteoglycans and contains chondroitin sulfate exclusively. It is altogether absent in the extracellular SV3T3 proteoglycans. The absence of this and other classes of chondroitin sulfate-containing proteoglycans can account for the 5–10-fold decreased synthesis of 35SO42?-labeled proteoglycans by SV3T3 cells when compared to Balb/c 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号