首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu XL  Liu QL  Wu B  Xie YS 《Biopolymers》2002,67(6):387-393
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that the pH has a marked effect on the fluorescence intensity of holo-ACF II; however, no appreciable shift of the emission maximum of holo-ACF II was observed in the pH range of 3-10. It was deduced from a relatively weak fluorescence emission of holo-ACF II at a neutral pH (6-7) that native holo-ACF II assumes a compactly folded structure in which the most interior Trp residues and quenchers are adjacent. Terbium ions can completely replace both Ca2+ ions in holo-ACF II as determined by equilibrium dialysis. Two Tb3+-binding sites with different apparent Tb3+ association constant values, (2.1 +/- 0.2) and (1.0 +/- 0.1) x 10(7) M(-1), were identified through Tb3+ fluorescence titration. In addition, it was confirmed from the titration of holo-ACF II and Tb3+-ACF II with N-bromosuccinimide (NBS) that only interior Trp residues are involved in the energy transfer to Tb3+ ions and all accessible Trp residues located in the surface of holo-ACF II have a similar affinity to NBS while those located in the surface of Tb3+-ACF II have two different kinds of affinity to NBS, which suggests a conformational change of holo-ACF II on the substitution of Tb3+ for Ca2+.  相似文献   

2.
Anticoagulation factor I (ACF I) from the venom of Agkistrodon acutus forms a 1:1 complex with activated coagulation factor X (FXa) in a Ca2+-dependent fashion and thereby prolongs the clotting time. In the present study, the dependence of the binding of ACF I with FXa on the concentration of Ca2+ ions was quantitatively analyzed by HPLC, and the result showed that the maximal binding of ACF I to FXa occurred at concentration of Ca2+ ions of about 1 mM. The binding of Ca2+ ions to ACF I was investigated by equilibrium dialysis and two Ca2+-binding sites with different affinities were identified. At pH 7.6, the apparent association constants K1 and K2 for these two sites were (1.8 ± 0.5) × 105 and (2.7 ± 0.6) × 104 M–1 (mean ± SE, n = 4), respectively. It was evident from the observation of Ca2+-induced changes in the intrinsic fluorescence of ACF I that ACF I underwent a conformational change upon binding of Ca2+ ions. The occupation of both Ca2+-binding sites in ACF I required a concentration of Ca2+ ions of about 1 mM, which is equal to the effective concentration of Ca2+ ions required both for maximal binding of ACF I to FXa and for the maximal enhancement of emission fluorescence of ACF I. It could be deduced from these results that the occupation of both Ca2+-binding sites in ACF I with Ca2+ ions and subsequent conformational rearrangement might be essential for the binding of ACF I to FXa.  相似文献   

3.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X (FXa)-binding protein that binds in a Ca2+-dependent fashion with marked anticoagulant activity. The thermodynamics of the binding of alkaline earth metal ions to ACF I and the effects of alkaline earth metal ions on the guanidine hydrochloride (GdnHCl)-induced unfolding of ACF I and the binding of ACF I to FXa were studied by isothermal titration calorimetry, fluorescence, circular dichroism, and surface plasmon resonance, respectively. The results indicate that the ionic radii of the cations occupying Ca2+-binding sites in ACF I crucially affect the binding affinity of ACF I for alkaline earth metal ions as well as the structural stability of ACF I against GdnHCl denaturation. Sr2+ and Ba2+, with ionic radii larger than the ionic radius of Ca2+, can bind to Ca2+-free ACF I (apo-ACF I), while Mg2+, with an ionic radius smaller than that of Ca2+, shows significantly low affinity for the binding to apo-ACF I. All bindings of Ca2+, Sr2+, and Ba2+ ions in two sites of ACF I are mainly enthalpy-driven and the entropy is unfavorable for them. Sr2+-stabilized ACF I exhibits slightly lower resistance to GdnHCl denaturation than Ca2+–ACF I, while Ba2+-stabilized ACF I exhibits much lower resistance to GdnHCl denaturation than Ca2+–ACF I. Mg2+ and Sr2+, with ionic radii close to that of Ca2+, can bind to FXa and therefore also induce the binding of ACF I to FXa, whereas Ba2+, with a much larger ionic radius than Ca2+, cannot support the binding of ACF I with FXa. Our observations suggest that bindings of Ca2+, Sr2+, and Ba2+ ions in two sites of ACF I increase the structural stability of ACF I, but these bindings are not essential for the binding of ACF I with FXa, and that the binding of Mg2+, Ca2+, and Sr2+ ions to FXa may be essential for the recognition between FXa and ACF I.  相似文献   

4.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF I, holo-ACF I, and Tb(3+)-reconstituted ACF I in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism. Metal ions were found to increase the structural stability of ACF I against GdnHCl and thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF I and Tb(3+)-ACF I is a two-state process with no detectable intermediate state(s), whereas the GdnHCl-induced unfolding/refolding of holo-ACF I in the presence of 1 mM Ca(2+) follows a three-step transition, with intermediate state a (Ia) and intermediate state b (Ib). Ca(2+) ions play an important role in the stabilization of the Ia and Ib states. The decalcification of holo-ACF I shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, whereas the reconstitution of apo-ACF I with Tb(3+) ions shifts the initial zone of denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.0 M GdnHCl) at which refolding from the fully denatured state of apo-ACF I to the Ib state of holo-ACF I or to the native state of Tb(3+)-ACF I can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF I, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ions-induced refolding provide evidence that the compact Tb(3+)-binding region forms first, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

5.
Xu X  Liu X  Zhang L  Chen J  Liu W  Liu Q 《The protein journal》2006,25(6):423-430
Acutolysin D, isolated from the venom of Agkistrodon acutus, possesses marked haemorrhagic and proteolytic activities. The molecular weight and the absorption coefficients (A 1% 280) of acutolyisn D have been determined to be 47,850 ± 8 amu and 9.3 by mass spectrometer and UV spectrum, respectively. The effects of metal ions on the conformation and activity of acutolysin D have been studied by following fluorescence, circular dichroism and biological activity measurements. Acutolysin D contains two Ca2+-binding sites and two Zn2+-binding sites determined by atomic absorption spectrophotometer. Zn2+ is essential for the enzyme activities of acutolysin D, however, the presence of 1 mM Zn2+ significantly decreases its caseinolytic activity and intrinsic fluorescence intensity at pH 9.0 due to Zn(OH)2 precipitate formation. Ca2+ is important for the structural integrity of acutolysin D, and the presence of 1 mM Ca2+ markedly enhances its caseinolytic activity. Interestingly, the caseinolytic activity which is inhibited partly by Cu2+, Co2+, Mn2+ or Tb3+ and inhibited completely by Cd2+, is enhanced by Mg2+. The fluorescence intensity of the protein decreases in the presence of Cu2+, Co2+, Cd2+ or Mn2+, but neither for Ca2+, Mg2+ nor for Tb3+. Zn2+, Ca2+, Mg2+, Cu2+, Mn2+, Co2+ and Tb3+ have slight effects on its secondary structure contents. In addition, Cd2+ causes a marked increase of antiparallel β-sheet content from 45.5% to 60.2%.  相似文献   

6.
The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca2+-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in hydrophobicity, and in thermal stability (its thermal transition shifts by 15°C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca2+-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca2+-binding sites, respectively, are modified and damaged) are practically indifferent to the presence of calcium ions. For the communication I, see [1].  相似文献   

7.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

8.
The fluorescence emission intensity of terbium is enhanced upon the binding of Tb3+ to cultured mouse spinal cord and dorsal root ganglion neurons, via nonradiative resonant energy transfer from membrane proteins. The relative fluorescence intensities of Tb3+ bound to dorsal root ganglion neurons were considerably greater than that of Tb3+ bound to large multipolar spinal cord neurons. The cell bodies of the dorsal root ganglion neurons were completely covered in a dense fluorescent blanket, whereas the fluorescence from the spinal cord soma presented a discontinuous pattern. The neurites of the spinal cord neuron were speckled with bright patches of Tb3+ fluorescence. A high concentration of Ca2+ reduced the relative fluorescence intensity of the Tb3+ -neuron complex. It is suggested that Tb3+ binds to Ca2+ -binding sites on the surface membrane of neurons.  相似文献   

9.
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X (FXa)-binding protein with both anticoagulant and hypotensive activities. The thermodynamics of the binding of alkaline earth metal ions to ACF II and their effects on the stability of ACF II and the binding of ACF II to FXa were investigated by isothermal titration calorimetry, fluorescence, differential scanning calorimetry, and surface plasmon resonance. The binding of ACF II to FXa does not have an absolute requirement for Ca2+. Mg2+, Sr2+, and Ba2+ can induce the binding of ACF II to FXa. The radii of the cations bound in ACF II crucially affect the binding affinity of ACF II for cations and the structural stability of ACF II against guanidine hydrochloride and thermal denaturation, whereas the radii of cations bound in FXa markedly affect the binding affinity between ACF II and FXa. The binding affinities of ACF II for cations and the capacities of metal-induced stabilization of ACF II follow the same trend: Ca2+ > Sr2+ > Ba2+. The metal-induced binding affinities of ACF II for FXa follow the trend Mg2+ > Ca2+ > Sr2+ > Ba2+. Although Mg2+ shows significantly low binding affinity with ACF II, Mg2+ is the most effective to induce the binding of ACF II with FXa. Our observations suggest that in blood the bindings of Ca2+ in two sites of ACF II increase the structural stability of ACF II, but these bindings are not essential for the binding of ACF II with FXa, and that the binding of Mg2+ and Ca2+ to FXa may be essential for the recognition between FXa and ACF II. Like Ca2+, the abundant Mg2+ in blood also plays an important role in the anticoagulation of ACF II.  相似文献   

10.
The giant, 3.6-MDa hexagonal bilayer hemoglobin (Hb) of Lumbricus terrestris consist of twelve 213-kDa globin subassemblies, each comprised of three disulfide-bonded trimers and three monomer globin chains, tethered to a central scaffolding of 36–42 linkers L1–L4 (24–32 kDa). It is known to contain 50–80 Ca and 2–4 Cu and Zn; the latter are thought to be responsible for the superoxide dismutase activity of the Hb. Total reflection X-ray fluorescence spectrometry was used to determine the Ca, Cu, and Zn contents of the Hb dissociated at pH 2.2, the globin dodecamer subassembly, and linker subunits L2 and L4. Although the dissociated Hb retained 20 Ca2+ and all the Cu and Zn, the globin subassembly had 0.4 to 3 Ca2+, depending on the method of isolation, and only traces of Cu and Zn. The linkers L2 and L4, isolated by reversed-phase high-pressure liquid chromatography at pH 2.2, had 1 Ca per mole and very little Cu and Zn. Electrospray ionization mass spectrometry of linker L3 at pH 2.2 and at neutral pH demonstrated avid binding of 1 Ca2+ and additional weaker binding of 7 Ca2+ in the presence of added Ca2+. Based on these and previous results which document the heterogeneous nature of the Ca2+-binding sites in Lumbricus Hb, we propose three classes of Ca2+-binding sites with affinities increasing in the following order: (i) a large number of sites (>100) with affinities lower than EDTA associated with linker L3 and dodecamer subassembly, (ii) 30 sites with affinities higher than EDTA occurring within the cysteine-rich domains of linker L3 and dodecamer subassembly, and (iii) 25 very high affinity sites associated with the linker subunits L1, L2, and L4. It is likely that the low-affinity type (i) sites are the ones involved in the effects of 1–100 mM Group IIA cations on Lumbricus Hb structure and function, namely increased stability of its quaternary structure and increased affinity and cooperativity of its oxygen binding.  相似文献   

11.
The tellurium oxyanion TeO32− has been used in the treatment of infectious diseases caused by mycobacteria. However, many pathogenic bacteria show tellurite resistance. Several tellurite resistance genes have been identified, and these genes mediate responses to diverse extracellular stimuli, but the mechanisms underlying their functions are unknown. To shed light on the function of KP-TerD, a 20.5 -kDa tellurite resistance protein from a plasmid of Klebsiella pneumoniae, we have determined its three-dimensional structure in solution using NMR spectroscopy. KP-TerD contains a β-sandwich formed by two five-stranded β-sheets and six short helices. The structure exhibits two negative clusters in loop regions on the top of the sandwich, suggesting that KP-TerD may bind metal ions. Indeed, thermal denaturation experiments monitored by circular dichroism and NMR studies reveal that KP-TerD binds Ca2+. Inductively coupled plasma-optical emission spectroscopy shows that the binding ratio of KP-TerD to Ca2+ is 1:2. EDTA (ethylenediaminetetraacetic acid) titrations of Ca2+-saturated KP-TerD monitored by one-dimensional NMR yield estimated dissociation constants of 18  and 200 nM for the two Ca2+-binding sites of KP-TerD. NMR structures incorporating two Ca2+ ions define a novel bipartite Ca2+-binding motif that is predicted to be highly conserved in TerD proteins. Moreover, these Ca2+-binding sites are also predicted to be present in two additional tellurite resistance proteins, TerE and TerZ. These results suggest that some form of Ca2+ signaling plays a crucial role in tellurite resistance and in other responses of bacteria to multiple external stimuli that depend on the Ter genes.  相似文献   

12.
The binding of Mn2+, Ca2+, and rare earth ions to apoconcanavalin A has been studied by water proton relaxation enhancement, electron paramagnetic resonance spectroscopy, and fluorescence spectroscopy. An electron paramagnetic resonance and water proton relaxation rate study of the titration of apoconcanavalin A with Mn2+ gives evidence of two equivalent binding sites per monomer with KD = 50 μm ± 4 μm. When a similar Mn2+ titration of apoconcanavalin A is performed in the presence of Ca2+ ion, very little free Mn2+ is detected by electron paramagnetic resonance until the two Mn2+ binding sites per monomer are filled. The substitution of a rare earth ion for Ca2+ ion in the above experiment often resulted in a slight displacement of Mn2+ from the transition metal site as detected by electron paramagnetic resonance. A water proton relaxation rate study of the titration of apoconcanavalin A with Gd3+ reflects two binding sites with a KD = 40 μm ± 4 μm and two with a KD = 200 μm ± 50 μm. The fluorescence emission spectrum of concanavalin A (λem = 340 nm) is slightly quenched by the addition of Tb3+ while Tb3+ fluorescence is greatly enhanced. A fluorometric titration of apoconcanavalin A with Tb3+ also reflects two sites with a KD = 40 μm ± 15 μm and two with a KD = 270 μm ± 50 μm.  相似文献   

13.
Carp muscle calcium binding parvalbumin, crystallized in 2.9 m-ammonium sulfate, can bind two Tb3+ ions, which displace the two Ca2+ ions normally present. The Ca2+ co-ordinated in the loop between the E and the F α-helices is displaced at low Tb3+ concentrations; whereas the Ca2+ at the CD site is replaced only at higher Tb3+ concentration. There is not a third Tb3+ site as had been suggested in interpretations of Tb3+ fluorescence experiments performed without ammonium sulfate. A third electron density peak in the difference Fourier maps is tentatively assigned to a sulfate ion co-ordinating the EF site Tb3+ ion.  相似文献   

14.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity.Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

15.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

16.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

17.
Terbium (Tb3+) binding to skeletal muscle troponin C was studied by fluorescence spectroscopy and circular dichroism. Titrations indicate that Tb3+, like Ca2+, preferentially binds to the two high affinity Ca2+-Mg2+ sites (III and IV) inducing structural changes similar to those induced by Ca2+. Tb3+ readily displaces Ca2+ from these sites suggesting a K(Tb3+) ≥ 109 M?1 In 6 M urea, both Ca2+ and Tb3+ bind preferentially to a single site on troponin C. The spectral changes suggest this to be site III.  相似文献   

18.
Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins. It has been proven, using Tb3+ as a fluorescence probe, that EoCen has four calcium-binding sites. The sensitized emission arises from nonradiative energy transfer between the three tyrosine residues (Tyr46, Tyr72, and Tyr79) of the N-terminal half and the bound Tb3+ ions. To determine the most critical of the three tyrosine residues for the process of fluorescence resonance energy transfer, six mutants of the N-terminal domain of EoCen, which contain one (N-Tyr46/N-Tyr72/N-Tyr79) or two (N-Y46F/N-Y72F/N-Y79F) tyrosine residues, were obtained by site-directed mutagenesis. The aromatic residue-sensitized Tb3+ fluorescence of N-Y79F was most affected, displaying a 50% reduction compared with wild-type N-EoCen. Among the tyrosines, Tyr79 is the shortest mean distance from the protein-bound Tb3+ (at sites I/II), as calculated via the Förster mechanism. The steady-state and time-resolved fluorescence parameters of the wild-type N-EoCen and the three double mutants suggest that Tyr79, which exists in a hydrophobic environment, has the highest quantum yield and a relatively long average lifetime. The decay of Tyr79 is the least heterogeneous among the three tyrosine residues. In addition, molecular modeling shows that a critical hydrogen bond is formed between the 4-hydroxyl group of Tyr79 and the oxygen from the side chains of the residue Asn39. Kinetic experiments on tyrosine and Tb3+ fluorescence demonstrate that tyrosine fluorescence quenching is largely due to the self-assembly of EoCen, and that the quenching degrees of the mutants differ. Resonance light scattering and crosslinking analysis carried out on the full-length single mutants (Y46F, Y72F, and Y79F) showed that Tyr79 also plays the most important role in the Tb3+-dependent self-assembly of EoCen among the three tyrosines.  相似文献   

19.
Measurements of fluorescence energy transfer have been performed to determine the distance between the lipid-water interface and the ATP-binding site in the (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum. The calculated distance between the donor, FITC bound to the protein (nucleotide binding-site marker), and the acceptor, rhodamine-5′-isothiocyanyldipalmitoylphosphatidylethanolamine (RITC-DPPE) incorporated in the membrane, was in the range of 34–42 Å. In addition the distance between the high affinity Ca2+-binding sites and the lipid/water interface has been calculated by luminescence energy transfer from Tb3+ bound to the Ca2+ sites to RITC-DPPE included in the membrane, and it was approx. 10 Å.  相似文献   

20.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号