共查询到20条相似文献,搜索用时 0 毫秒
1.
Wade A. Kruger Gregory R. Monteith Philip Poronnik 《The international journal of biochemistry & cell biology》2010,42(6):805-808
Since its first characterization in the erythrocyte membrane the plasma membrane Ca2+-ATPase has been well-defined as a ubiquitous mechanism for the efflux of Ca2+ from eukaryotic cells. With 4 isoforms and potentially 30 splice variants, defining the absolute physiological role of plasma membrane Ca2+-ATPase has been difficult and very limited due to the lack of effective blockers/antibodies and difficulties in measuring the activity of individual isoforms. This review highlights recent developments showing that specific plasma membrane Ca2+-ATPase isoforms are subject to dynamic regulation by PSD-95/Dlg/Zo-1 scaffold proteins. Such interactions support a new paradigm, that by serving as key players in multifunctional protein complexes, transporters can regulate other signalling processes independent of their primary ion pumping function. 相似文献
2.
The multiple PSD-95, Dlg, and Zo-1 (PDZ) domain protein, glutamate receptor-interacting protein (GRIP), is involved in the clustering and trafficking of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor by directly binding to the cytoplasmic tail of the receptor's GluR2 subunit. Both the forth and fifth PDZ domains (PDZ4 and PDZ5) of GRIP are required for effective binding to the receptor. Using NMR and circular dichroism spectroscopic techniques, we show that PDZ5 is completely unstructured in solution. Freshly prepared PDZ4 is largely folded, but the domain can spontaneously unfold. Neither PDZ4 nor PDZ5 binds to GluR2 in solution. Unexpectedly, when PDZ4 and PDZ5 are covalently connected (i.e. PDZ45), both PDZ domains become well folded and stable in solution. The covalent linkage of the two PDZ domains is essential for proper folding of the tandem PDZ domains and its effective binding to GluR2. The interdomain chaperoning effect observed in the PDZ domains of GRIP represents a previously uncharacterized function of PDZ domains. 相似文献
3.
Fusicoccin Binding to Its Plasma Membrane Receptor and the
Activation of the Plasma Membrane H+-ATPase
: IV. Fusicoccin Induces the Association between the Plasma
Membrane H+-ATPase and the Fusicoccin Receptor
下载免费PDF全文

Claudio Olivari Cristina Meanti Maria Ida De Michelis Franca Rasi-Caldogno 《Plant physiology》1998,116(2):529-537
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme. 相似文献
4.
Cristina Bonza Antonella Carnelli Maria Ida De Michelis Franca Rasi-Caldogno 《Plant physiology》1998,116(2):845-851
The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl β-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope. 相似文献
5.
The plasma membrane calcium pump, which ejects Ca2+ from the cell, is regulated by calmodulin. In the absence of calmodulin, the pump is relatively inactive; binding of calmodulin
to a specific domain stimulates its activity. Phosphorylation of the pump with protein kinase C or A may modify this regulation.
Most of the regulatory functions of the enzyme are concentrated in a region at the carboxyl terminus. This region varies substantially
between different isoforms of the pump, causing substantial differences in regulatory properties. The pump shares some motifs
of the carboxyl terminus with otherwise unrelated proteins: The calmodulin-binding domain is a modified IQ motif (a motif
which is present in myosins) and the last 3 residues of isoform 4b are a PDZ target domain. The pump is ubiquitous, with isoforms
1 and 4 of the pump being more widely distributed than 2 and 3. In some kinds of cells isoform 1 or 4 is missing, and is replaced
by another isoform.
Received: 26 January 1998/Revised: 6 April 1998 相似文献
6.
质膜Ca2+-ATPase (PMCA)是P型ATPase家族的一员,在真核细胞中主要负责信号刺激后胞内高浓度Ca2+的清除扫尾工作,并对维持静息状态下较低Ca2+浓度起着重要的调节作用.PMCA的一级结构已被确定,拓扑学结构显示,它有10个跨膜区和3个胞浆功能区.它的4个编码基因可产生4种亚型(PMCA 1~4),这些亚型在功能与分布上存在差异.PMCA的活性可被钙调蛋白等多种因素调节,这与其结构特征息息相关.近年来,PMCA已被证实与脂筏结构有一定关联,它在信号传导和细胞凋亡中的作用也成为目前科学研究的焦点.本文主要对PMCA的结构、亚型和功能的研究现状进行综述. 相似文献
7.
X Xu Y c Shi X Wu P Gambetti D Sui M Z Cui 《The Journal of biological chemistry》1999,274(46):32543-32546
Presenilin-1 (PS-1) is the most causative Alzheimer gene product, and its function is not well understood. In an attempt to elucidate the function of PS-1, we screened a human brain cDNA library for PS-1-interacting proteins using the yeast two-hybrid system and isolated a novel protein containing a PSD-95/Dlg/ZO-1 (PDZ)-like domain. This novel PS-1-associated protein (PSAP) shares a significant similarity with a Caenorhabditis elegans protein of unknown function. Northern blot analysis revealed that PSAP is predominantly expressed in the brain. Deletion of the first four C-terminal amino acid residues of PS-1, which contain the PDZ domain-binding motif (Gln-Phe-Tyr-Ile), reduced the binding activity of PS-1 toward PSAP 4-fold. These data suggest that PS-1 may associate with a PDZ-like domain-containing protein in vivo and thus may participate in receptor or channel clustering and intracellular signaling events in the brain. 相似文献
8.
Spatial and temporal regulation of intracellular Ca(2+) signaling depends on localized Ca(2+) microdomains containing the requisite molecular components for Ca(2+) influx, efflux, and signal transmission. Plasma membrane Ca(2+)-ATPase (PMCA) isoforms of the "b" splice type contain predicted PDZ (PSD95/Dlg/ZO-1) interaction domains. The COOH-terminal tail of PMCA2b isolated the membrane-associated guanylate kinase (MAGUK) protein SAP97/hDlg as a binding partner in a yeast two-hybrid screen. The related MAGUKs SAP90/PSD95, PSD93/chapsyn-110, SAP97, and SAP102 all bound to the COOH-terminal tail of PMCA4b, whereas only the first three bound to the tail of PMCA2b. Coimmunoprecipitations confirmed the interaction selectivity between PMCA4b and SAP102 as opposed to the promiscuity of PMCA2b and 4b in interacting with other SAPs. Confocal immunofluorescence microscopy revealed the exclusive presence and colocalization of PMCA4b and SAP97 in the basolateral membrane of polarized Madin-Darby canine kidney epithelial cells. In hippocampal neurons, PMCA2b was abundant throughout the somatodendritic compartment and often extended into the neck and head of individual spines where it colocalized with SAP90/PSD95. These data show that PMCA "b" splice forms interact promiscuously but also with specificity with different members of the PSD95 family of SAPs. PMCA-SAP interactions may play a role in the recruitment and maintenance of the PMCA at specific membrane domains involved in local Ca(2+) regulation. 相似文献
9.
Tatsuhiro Sato Akio Nakashima Lea Guo Fuyuhiko Tamanoi 《The Journal of biological chemistry》2009,284(19):12783-12791
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway
by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully
reproduced in vitro by using mTORC1 immunoprecipitated by the use of
anti-raptor antibody from mammalian cells starved for nutrients. The low
in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is
dramatically increased by the addition of recombinant Rheb. On the other hand,
the addition of Rheb does not activate mTORC2 immunoprecipitated from
mammalian cells by the use of anti-rictor antibody. The activation of mTORC1
is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42
did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition,
the activation is dependent on the presence of bound GTP. We also find that
the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a
recently proposed mediator of Rheb action, appears not to be involved in the
Rheb-dependent activation of mTORC1 in vitro, because the preparation
of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of
Rheb results in a significant increase of binding of the substrate protein
4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that
competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation
of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated
by Rheb. Rheb does not induce autophosphorylation of mTOR. These results
suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to
regulate mTORC1 activation.Rheb defines a unique member of the Ras superfamily G-proteins
(1). We have shown that Rheb
proteins are conserved and are found from yeast to human
(2). Although yeast and fruit
fly have one Rheb, mouse and human have two Rheb proteins termed Rheb1 (or
simply Rheb) and Rheb2 (RhebL1)
(2). Structurally, these
proteins contain G1-G5 boxes, short stretches of amino acids that define the
function of the Ras superfamily G-proteins including guanine nucleotide
binding (1,
3,
4). Rheb proteins have a
conserved arginine at residue 15 that corresponds to residue 12 of Ras
(1). The effector domain
required for the binding with downstream effectors encompasses the G2 box and
its adjacent sequences (1,
5). Structural analysis by
x-ray crystallography further shows that the effector domain is exposed to
solvent, is located close to the phosphates of GTP especially at residues
35–38, and undergoes conformational change during GTP/GDP exchange
(6). In addition, all Rheb
proteins end with the CAAX (C is cysteine, A is an aliphatic amino
acid, and X is the C-terminal amino acid) motif that signals
farnesylation. In fact, we as well as others have shown that these proteins
are farnesylated
(7–9).Rheb plays critical roles in the TSC/Rheb/mTOR signaling, a signaling
pathway that plays central roles in regulating protein synthesis and growth in
response to nutrient, energy, and growth conditions
(10–14).
Rheb is down-regulated by a TSC1·TSC2 complex that acts as a
GTPase-activating protein for Rheb
(15–19).
Recent studies established that the GAP domain of TSC2 defines the functional
domain for the down-regulation of Rheb
(20). Mutations in the
Tsc1 or Tsc2 gene lead to tuberous sclerosis whose symptoms
include the appearance of benign tumors called hamartomas at different parts
of the body as well as neurological symptoms
(21,
22). Overexpression of Rheb
results in constitutive activation of mTOR even in the absence of nutrients
(15,
16). Two mTOR complexes,
mTORC1 and mTORC2, have been identified
(23,
24). Whereas mTORC1 is
involved in protein synthesis activation mediated by S6K and 4EBP1, mTORC2 is
involved in the phosphorylation of Akt in response to insulin. It has been
suggested that Rheb is involved in the activation of mTORC1 but not mTORC2
(25).Although Rheb is clearly involved in the activation of mTOR, the mechanism
of activation has not been established. We as well as others have suggested a
model that involves the interaction of Rheb with the TOR complex
(26–28).
Rheb activation of mTOR kinase activity using immunoprecipitated mTORC1 was
reported (29). Rheb has been
shown to interact with mTOR
(27,
30), and this may involve
direct interaction of Rheb with the kinase domain of mTOR
(27). However, this Rheb/mTOR
interaction is a weak interaction and is not dependent on the presence of GTP
bound to Rheb (27,
28). Recently, a different
model proposing that FKBP38 (FK506-binding protein
38) mediates the activation of
mTORC1 by Rheb was proposed
(31,
32). In this model, FKBP38
binds mTOR and negatively regulates mTOR activity, and this negative
regulation is blocked by the binding of Rheb to FKBP38. However, recent
reports dispute this idea
(33).To further characterize Rheb activation of mTOR, we have utilized an in
vitro system that reproduces activation of mTORC1 by the addition of
recombinant Rheb. We used mTORC1 immunoprecipitated from nutrient-starved
cells using anti-raptor antibody and have shown that its kinase activity
against 4E-BP1 is dramatically increased by the addition of recombinant Rheb.
Importantly, the activation of mTORC1 is specific to Rheb and is dependent on
the presence of bound GTP as well as an intact effector domain. FKBP38 is not
detected in our preparation and further investigation suggests that FKBP38 is
not an essential component for the activation of mTORC1 by Rheb. Our study
revealed that Rheb enhances the binding of a substrate 4E-BP1 with mTORC1
rather than increasing the kinase activity of mTOR. 相似文献
10.
Yu-Mi Yang Jiae Lee Hae Jo Soonhong Park Inik Chang Shmuel Muallem Dong Min Shin 《The Journal of biological chemistry》2014,289(36):24971-24979
Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca2+-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca2+ signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca2+ signaling in parotid gland acinar cells using Homer2-deficient (Homer2−/−) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca2+-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca2+-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca2+ extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca2+ clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca2+ signaling in parotid acinar cells. 相似文献
11.
The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than −120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20–25 and 10–13 times more permeable to Ca2+ than to K+ and to Cl−, respectively. Channel currents were strongly inhibited by 10 μm lanthanum and 50% inhibited by 100 μm nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells. Received: 13 February 1996/Revised: 12 August 1996 相似文献
12.
Identification of the Plasma Membrane Ca2+-ATPase and of Its Autoinhibitory Domain 总被引:1,自引:3,他引:1
下载免费PDF全文

The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme. 相似文献
13.
水稻幼苗根细胞质膜和液泡膜微囊Ca^2+-ATP酶的特性 总被引:3,自引:0,他引:3
水稻幼苗根质膜和液泡膜Ca2+-ATP酶对ATP的Km值分别为7.1和4.5 μ mol·L-1;反应的最适pH分别为8.0和7.0.两者活性均受Na3VO4和曙红B(EB)抑制;CPZ抑制质膜Ca2+-ATP酶活性,但促进液泡膜Ca2+-ATP酶活性.30mmol·L-1CaCl2浸种和CaCl2浸种结合低温锻炼预处理,均可提高此酶的活性和冷稳定性. 相似文献
14.
15.
16.
Uchino S Wada H Honda S Hirasawa T Yanai S Nakamura Y Ondo Y Kohsaka S 《Biochemical and biophysical research communications》2003,310(4):1140-1147
Slo2 channels are a type of sodium-activated K+ channels and possess a typical PDZ binding motif at the carboxy-terminal end. Thus, we investigated whether Slo2 channels bind to PSD-95, because it is well known that other types of K+ channels, voltage-gated and inward rectifier K+ channels, bind to PSD-95 via the PDZ binding motif and are involved in excitatory synaptic transmission. By using an extract prepared from cultured neocortical neurons, we demonstrated a biochemical interaction between mSlo2 channels and PSD-95, and a mutational analysis revealed that mSlo2 channels bound to the first PDZ domain of PSD-95 via the PDZ binding motif. To investigate the expression of mSlo2 protein in primary neocortical neurons, we raised anti-mSlo2 channel antibody and immunostained neocortical neurons. The immunocytochemical study showed that mSlo2 channels partly colocalized with PSD-95 in mouse neocortical neurons. 相似文献
17.
Irene Mangialavori Mariela Ferreira-Gomes Mar��a F. Pignataro Emanuel E. Strehler Juan Pablo F. C. Rossi 《The Journal of biological chemistry》2010,285(1):123-130
The purpose of this work was to obtain information about conformational changes of the plasma membrane Ca2+-pump (PMCA) in the membrane region upon interaction with Ca2+, calmodulin (CaM) and acidic phospholipids. To this end, we have quantified labeling of PMCA with the photoactivatable phosphatidylcholine analog [125I]TID-PC/16, measuring the shift of conformation E2 to the auto-inhibited conformation E1I and to the activated E1A state, titrating the effect of Ca2+ under different conditions. Using a similar approach, we also determined the CaM-PMCA dissociation constant. The results indicate that the PMCA possesses a high affinity site for Ca2+ regardless of the presence or absence of activators. Modulation of pump activity is exerted through the C-terminal domain, which induces an apparent auto-inhibited conformation for Ca2+ transport but does not modify the affinity for Ca2+ at the transmembrane domain. The C-terminal domain is affected by CaM and CaM-like treatments driving the auto-inhibited conformation E1I to the activated E1A conformation and thus modulating the transport of Ca2+. This is reflected in the different apparent constants for Ca2+ in the absence of CaM (calculated by Ca2+-ATPase activity) that sharply contrast with the lack of variation of the affinity for the Ca2+ site at equilibrium. This is the first time that equilibrium constants for the dissociation of Ca2+ and CaM ligands from PMCA complexes are measured through the change of transmembrane conformations of the pump. The data further suggest that the transmembrane domain of the PMCA undergoes major rearrangements resulting in altered lipid accessibility upon Ca2+ binding and activation. 相似文献
18.
19.
The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins 总被引:5,自引:0,他引:5
Jaulin-Bastard F Saito H Le Bivic A Ollendorff V Marchetto S Birnbaum D Borg JP 《The Journal of biological chemistry》2001,276(18):15256-15263
Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity. 相似文献
20.
Hryciw DH Ekberg J Ferguson C Lee A Wang D Parton RG Pollock CA Yun CC Poronnik P 《The Journal of biological chemistry》2006,281(23):16068-16077
The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney (OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5. 相似文献