共查询到20条相似文献,搜索用时 15 毫秒
1.
Seiji Nakamura Toshinari Takamura Naoto Matsuzawa-Nagata Hiroaki Takayama Hirofumi Misu Hiroyo Noda Satoko Nabemoto Seiichiro Kurita Tsuguhito Ota Hitoshi Ando Ken-ichi Miyamoto Shuichi Kaneko 《The Journal of biological chemistry》2009,284(22):14809-14818
Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux
into the liver via the portal vein and may cause fatty liver disease and
hepatic insulin resistance. However, because animal models of insulin
resistance induced by lipid infusion or a high fat diet are complex and may be
accompanied by alterations not restricted to the liver, it is difficult to
determine the contribution of FFAs to hepatic insulin resistance. Therefore,
we treated H4IIEC3 cells, a rat hepatocyte cell line, with a monounsaturated
fatty acid (oleate) and a saturated fatty acid (palmitate) to investigate the
direct and initial effects of FFAs on hepatocytes. We show that palmitate, but
not oleate, inhibited insulin-stimulated tyrosine phosphorylation of insulin
receptor substrate 2 and serine phosphorylation of Akt, through c-Jun
NH2-terminal kinase (JNK) activation. Among the well established
stimuli for JNK activation, reactive oxygen species (ROS) played a causal role
in palmitate-induced JNK activation. In addition, etomoxir, an inhibitor of
carnitine palmitoyltransferase-1, which is the rate-limiting enzyme in
mitochondrial fatty acid β-oxidation, as well as inhibitors of the
mitochondrial respiratory chain complex (thenoyltrifluoroacetone and carbonyl
cyanide m-chlorophenylhydrazone) decreased palmitate-induced ROS
production. Together, our findings in hepatocytes indicate that palmitate
inhibited insulin signal transduction through JNK activation and that
accelerated β-oxidation of palmitate caused excess electron flux in the
mitochondrial respiratory chain, resulting in increased ROS generation. Thus,
mitochondria-derived ROS induced by palmitate may be major contributors to JNK
activation and cellular insulin resistance.Insulin is the major hormone that inhibits gluconeogenesis in the liver.
Visceral adiposity in obesity causes hepatic steatosis and insulin resistance.
In an insulin-resistant state, impaired insulin action allows enhancement of
glucose production in the liver, resulting in systemic hyperglycemia
(1) and contributing to the
development of type 2 diabetes. In addition, we have demonstrated
experimentally that insulin resistance accelerated the pathology of
steatohepatitis in genetically obese diabetic OLETF rats
(2). In contrast, lipid-induced
oxidative stress caused steatohepatitis and hepatic insulin resistance in mice
(3). In fact, steatosis of the
liver is an independent predictor of insulin resistance in patients with
nonalcoholic fatty liver disease
(4).It remains unclear whether hepatic steatosis causally contributes to
insulin resistance or whether it is merely a resulting pathology. Excessive
dietary free fatty acid
(FFA)2 flux into the
liver via the portal vein may cause fatty liver disease and hepatic insulin
resistance. Indeed, elevated plasma FFA concentrations correlate with obesity
and decreased target tissue insulin sensitivity
(5).Experimentally, lipid infusion or a high fat diet that increases
circulating FFA levels promotes insulin resistance in the liver. Candidate
events linking FFA to insulin resistance in vivo are the
up-regulation of SREBP-1c (6),
inflammation caused by activation of c-Jun amino-terminal kinase (JNK)
(7) or IKKβ
(8), endoplasmic reticulum (ER)
stress (9), ceramide
(10,
11), and TRB3
(12).However, which event is the direct and initial target of FFA in the liver
is unclear. Insulin resistance induced by lipid infusion or a high fat diet is
complex and may be accompanied by alterations not restricted to the liver,
making it difficult to determine the contribution of FFAs to hepatic insulin
resistance. For example, hyperinsulinemia and hyperglycemia secondary to the
initial event also may contribute to the development of diet-induced insulin
resistance in vivo
(6).To address the early event(s) triggering the development of high fat diet-
or obesity-induced insulin resistance, we investigated the molecular
mechanism(s) underlying the direct action of FFA on hepatocytes to cause
insulin resistance in vitro, using the rat hepatocyte cell line
H4IIEC3. We found that mitochondria-derived reactive oxygen species (ROS) were
a cause of palmitate-induced insulin resistance in hepatocytes. 相似文献
2.
3.
Background
The matrix metalloproteinases (MMPs) and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1–4) are responsible for the physiological remodeling of the extracellular matrix (ECM). Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells.Methodology/Principal Findings
Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ) or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2), ribosomal S6 kinase (RSK1) and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction.Conclusion
The results demonstrate that exclusively cell surface-bound endogenous TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival signaling pathways. 相似文献4.
《Cell cycle (Georgetown, Tex.)》2013,12(20):2464-2472
TRAIL ligand induces selectively apoptosis in tumor cells by binding to two death receptors (DR4 and DR5) and holds promise as a potential therapeutic agent against cancer. While it has been known for long time that TRAIL receptors are commonly expressed in wide variety of normal tissues, it is not well understood why TRAIL kills tumor cells but leaves normal cells unharmed. The prototypic oncogene c-Myc promotes the cell cycle and simultaneously primes activation of the Bcl-2 family controlled mitochondria apoptosis pathway. A striking reflection of the c-Myc-dependent apoptotic sensitization is the dramatic c-Myc-induced vulnerability of cells to TRAIL and other death receptor ligands. Here we summarize the recent findings regarding the death mechanisms of TRAIL/TRAIL receptor system and the connection of c-Myc to the mitochondrial apoptosis pathway, focusing on our work that couples c-Myc via Bak to the TRAIL death receptor pathway. Finally, we present a mitochondria-priming model to explain how c-Myc-Bak interaction amplifies the TRAIL-induced caspase 8-Bid pathway to induce fullblown apoptosis. We discuss the implications of these findings for understanding the selective cytotoxicity of TRAIL and for the therapeutic exploitation of the death receptor pathway. 相似文献
5.
6.
Background
In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro.Principal Findings
Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure.Conclusions
RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring. 相似文献7.
Rationale
Cardiomyocytes express neurotrophin receptor TrkA that promotes survival following nerve growth factor (NGF) ligation. Whether TrkA also resides in cardiac fibroblasts (CFs) and underlies cardioprotection is unknown.Objective
To test whether CFs express TrkA that conveys paracrine signals to neighbor cardiomyocytes using, as probe, the Chagas disease parasite Trypanosoma cruzi, which expresses a TrkA-binding neurotrophin mimetic, named PDNF. T cruzi targets the heart, causing chronic debilitating cardiomyopathy in ∼30% patients.Methods and Results
Basal levels of TrkA and TrkC in primary CFs are comparable to those in cardiomyocytes. However, in the myocardium, TrkA expression is significantly lower in fibroblasts than myocytes, and vice versa for TrkC. Yet T cruzi recognition of TrkA on fibroblasts, preferentially over cardiomyocytes, triggers a sharp and sustained increase in NGF, including in the heart of infected mice or of mice administered PDNF intravenously, as early as 3-h post-administration. Further, NGF-containing T cruzi- or PDNF-induced fibroblast-conditioned medium averts cardiomyocyte damage by H2O2, in agreement with the previously recognized cardioprotective role of NGF.Conclusions
TrkA residing in CFs induces an exuberant NGF production in response to T cruzi infection, enabling, in a paracrine fashion, myocytes to resist oxidative stress, a leading Chagas cardiomyopathy trigger. Thus, PDNF-TrkA interaction on CFs may be a mechanism orchestrated by T cruzi to protect its heart habitat, in concert with the long-term (decades) asymptomatic heart parasitism that characterizes Chagas disease. Moreover, as a potent booster of cardioprotective NGF in vivo, PDNF may offer a novel therapeutic opportunity against cardiomyopathies. 相似文献8.
Rebecca M. Dixon Jack R. Mellor Jonathan G. Hanley 《The Journal of biological chemistry》2009,284(21):14230-14235
Oxygen and glucose deprivation (OGD) induces delayed cell death in
hippocampal CA1 neurons via Ca2+/Zn2+-permeable,
GluR2-lacking AMPA receptors (AMPARs). Following OGD, synaptic AMPAR currents
in hippocampal neurons show marked inward rectification and increased
sensitivity to channel blockers selective for GluR2-lacking AMPARs. This
occurs via two mechanisms: a delayed down-regulation of GluR2 mRNA expression
and a rapid internalization of GluR2-containing AMPARs during the OGD insult,
which are replaced by GluR2-lacking receptors. The mechanisms that underlie
this rapid change in subunit composition are unknown. Here, we demonstrate
that this trafficking event shares features in common with events that mediate
long term depression and long term potentiation and is initiated by the
activation of N-methyl-d-aspartic acid receptors. Using
biochemical and electrophysiological approaches, we show that peptides that
interfere with PICK1 PDZ domain interactions block the OGD-induced switch in
subunit composition, implicating PICK1 in restricting GluR2 from synapses
during OGD. Furthermore, we show that GluR2-lacking AMPARs that arise at
synapses during OGD as a result of PICK1 PDZ interactions are involved in
OGD-induced delayed cell death. This work demonstrates that PICK1 plays a
crucial role in the response to OGD that results in altered synaptic
transmission and neuronal death and has implications for our understanding of
the molecular mechanisms that underlie cell death during stroke.Oxygen and glucose deprivation
(OGD)3 associated with
transient global ischemia induces delayed cell death, particularly in
hippocampal CA1 pyramidal cells
(1–3),
a phenomenon that involves Ca2+/Zn2+-permeable,
GluR2-lacking AMPARs (4).
AMPARs are heteromeric complexes of subunits GluR1–4
(5), and most AMPARs in the
hippocampus contain GluR2, which renders them calcium-impermeable and results
in a marked inward rectification in their current-voltage relationship
(6–8).
Ischemia induces a delayed down-regulation of GluR2 mRNA and protein
expression (4,
9–11),
resulting in enhanced AMPAR-mediated Ca2+ and Zn2+
influx into CA1 neurons (10,
12). In these neurons,
AMPAR-mediated postsynaptic currents (EPSCs) show marked inward rectification
1–2 days following ischemia and increased sensitivity to 1-naphthyl
acetyl spermine (NASPM), a channel blocker selective for GluR2-lacking AMPARs
(13–16).
Blockade of these channels at 9–40 h following ischemia is
neuroprotective, indicating a crucial role for Ca2+-permeable
AMPARs in ischemic cell death
(16).In addition to delayed changes in AMPAR subunit composition as a result of
altered mRNA expression, it was recently reported that
Ca2+-permable, GluR2-lacking AMPARs are targeted to synaptic sites
via membrane trafficking at much earlier times during OGD
(17). This subunit
rearrangement involves endocytosis of AMPARs containing GluR2 complexed with
GluR1/3, followed by exocytosis of GluR2-lacking receptors containing GluR1/3
(17). However, the molecular
mechanisms behind this trafficking event are unknown, and furthermore, it is
not known whether these trafficking-mediated changes in AMPAR subunit
composition contribute to delayed cell death.AMPAR trafficking is a well studied phenomenon because of its crucial
involvement in long term depression (LTD) and long term potentiation (LTP),
activity-dependent forms of synaptic plasticity thought to underlie learning
and memory. AMPAR endocytosis, exocytosis, and more recently subunit-switching
events (brought about by trafficking that involves endo/exocytosis) are
central to the necessary changes in synaptic receptor complement
(7,
18–20).
It is possible that similar mechanisms regulate AMPAR trafficking during
OGD.PICK1 is a PDZ and BAR (Bin-amphiphysin-Rus) domain-containing protein that
binds, via the PDZ domain, to a number of membrane proteins including AMPAR
subunits GluR2/3. This interaction is required for AMPAR internalization from
the synaptic plasma membrane in response to Ca2+ influx via NMDAR
activation in hippocampal neurons
(21–23).
This process is the major mechanism that underlies the reduction in synaptic
strength in LTD. Furthermore, PICK1-mediated trafficking has recently emerged
as a mechanism that regulates the GluR2 content of synaptic receptors, which
in turn determines their Ca2+ permeability
(7,
20). This is likely to be of
profound importance in both plasticity and pathological mechanisms.
Importantly, PICK1 overexpression has been shown to induce a shift in synaptic
AMPAR subunit composition in hippocampal CA1 neurons, resulting in inwardly
rectifying AMPAR EPSCs via reduced surface GluR2 and no change in GluR1
(24). This suggests that PICK1
may mediate the rapid switch in subunit composition occurring during OGD
(17). Here, we demonstrate
that the OGD-induced switch in AMPAR subunit composition is dependent on PICK1
PDZ interactions, and importantly, that this early trafficking event that
occurs during OGD contributes to the signaling that results in delayed
neuronal death. 相似文献
9.
Thomas R. Hurd Yvonne Collins Irina Abakumova Edward T. Chouchani Bartlomiej Baranowski Ian M. Fearnley Tracy A. Prime Michael P. Murphy Andrew M. James 《The Journal of biological chemistry》2012,287(42):35153-35160
Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H2O2) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H2O2 derives from superoxide (O2˙̄), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O2˙̄ production, such as may occur under nutrient excess and low ATP demand, the increase in O2˙̄ and H2O2 may provide feedback signals to modulate mitochondrial metabolism. 相似文献
10.
Nathan A. Bracey Benjamin Gershkovich Justin Chun Akosua Vilaysane H. Christopher Meijndert James R. Wright Jr. Paul W. Fedak Paul L. Beck Daniel A. Muruve Henry J. Duff 《The Journal of biological chemistry》2014,289(28):19571-19584
Nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) is a pattern recognition receptor that is implicated in the pathogenesis of inflammation and chronic diseases. Although much is known regarding the NLRP3 inflammasome that regulates proinflammatory cytokine production in innate immune cells, the role of NLRP3 in non-professional immune cells is unclear. Here we report that NLRP3 is expressed in cardiac fibroblasts and increased during TGFβ stimulation. NLRP3-deficient cardiac fibroblasts displayed impaired differentiation and R-Smad activation in response to TGFβ. Only the central nucleotide binding domain of NLRP3 was required to augment R-Smad signaling because the N-terminal Pyrin or C-terminal leucine-rich repeat domains were dispensable. Interestingly, NLRP3 regulation of myofibroblast differentiation proceeded independently from the inflammasome, IL-1β/IL-18, or caspase 1. Instead, mitochondrially localized NLRP3 potentiated reactive oxygen species to augment R-Smad activation. In vivo, NLRP3-deficient mice were protected against angiotensin II-induced cardiac fibrosis with preserved cardiac architecture and reduced collagen 1. Together, these results support a distinct role for NLRP3 in non-professional immune cells independent from the inflammasome to regulate differential aspects of wound healing and chronic disease. 相似文献
11.
12.
Guo-Wei Wang Chao Lv Zhi-Ran Shi Ren-Tao Zeng Xue-Yun Dong Wei-Dong Zhang Run-Hui Liu Lei Shan Yun-Heng Shen 《PloS one》2014,9(12)
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells. 相似文献
13.
Stephen Smith Rati Tripathi Charnise Goodings Susan Cleveland Elizabeth Mathias J. Andrew Hardaway Natalina Elliott Yajun Yi Xi Chen James Downing Charles Mullighan Deborah A. Swing Lino Tessarollo Liqi Li Paul Love Nancy A. Jenkins Neal G. Copeland Mary Ann Thompson Yang Du Utpal P. Davé 《PloS one》2014,9(1)
14.
P. G. Gunasekar A. G. Kanthasamy J. L. Borowitz G. E. Isom 《Journal of neurochemistry》1995,65(5):2016-2021
Abstract: The ability of glutamate to stimulate generation of intracellular oxidant species was determined by microfluorescence in cerebellar granule cells loaded with the oxidant-sensitive fluorescent dye 2,7-dichlorofluorescin (DCF). Exposure of cells to glutamate (10 µM) produced a rapid generation of oxidants that was blocked ~70% by MK-801 (a noncompetitive NMDA-receptor antagonist). To determine if nitric oxide (NO) or reactive oxygen species (ROS) contributed to the oxidation of DCF, cells were treated with compounds that altered their generation. NO production was inhibited with NG-nitro-l -arginine methyl ester (l -NAME) (nitric oxide synthase inhibitor) and reduced hemoglobin (NO scavenger). Alternatively, cells were incubated with superoxide dismutase (SOD) and catalase, which selectively metabolize O2?· andH2O2. Concurrent inhibition of O2?· and NO production nearly abolished intracellular oxidant generation. Pretreatment of cells with either chelerythrine (1 µM, protein kinase C inhibitor) or quinacrine (5 µM, phospholipase A2 inhibitor) before addition of glutamate also blocked oxidation of DCF. Generation of oxidants by glutamate was significantly reduced by incubating the cells in Ca2+-free buffer. In cytotoxicity studies, a positive correlation was observed between glutamate-induced death and oxidant generation. Glutamate-induced cytotoxicity was blocked by MK-801 and attenuated by treatment with l -NAME, chelerythrine, SOD, or quinacrine. It is concluded that glutamate induces concurrent generation of NO and ROS by activation of both NMDA receptors and non-NMDA receptors through a Ca2+-mediated process. Activation of NO synthase and phospholipaseA2 contribute significantly to this response. It is proposed that simultaneous generation of NO and ROS results in formation of peroxynitrite, which initiates the cellular damage. 相似文献
15.
Brandon J. Berry Adam J. Trewin Andrea M. Amitrano Minsoo Kim Andrew P. Wojtovich 《Journal of molecular biology》2018,430(21):3873-3891
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (?ψm) and chemical (?pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models—mitochondria and cells—only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo. 相似文献
16.
Raquel R. Bartz Ping Fu Hagir B. Suliman Stephen D. Crowley Nancy Chou MacGarvey Karen Welty-Wolf Claude A. Piantadosi 《PloS one》2014,9(7)
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. 相似文献
17.
Lihua Ye Zhe Shi Huixue Liu Xiaoda Yang Kui Wang 《Biological trace element research》2013,151(1):148-155
Gadolinium (Gd) compounds have important applications as MRI contrast and potential anticancer agents. The present study investigated the mechanisms of the proapoptotic effect of gadolinium chloride (GdCl3) on hepatoblastoma cell line (Hep G2) tumor cells. The experimental results indicated that GdCl3 induced apoptosis of Hep G2 at high concentration and with long time incubation; however, unlike the actions on normal cell lines, GdCl3 did not cause any oxidative stress on tumor cells. Cytochrome c (Cyt c) and apoptosis inducing factor release, Bax translocation, collapse of mitochondria membrane potential, caspase 3 and 8 activation, and Bid cleavage were observed along with a sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK). Addition of ERK and JNK inhibitor attenuated the effect of GdCl3 induced apoptosis and Cyt c release. All the results suggested a novel mechanism that GdCl3 induced Hep G2 cell death through intrinsic and external death pathways without significant elevation of reactive oxygen species generation. The present work provided new insight to understand the mechanisms of the biological effects of GdCl3 and implications for the development of anticancer Gd agents. 相似文献
18.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition. 相似文献
19.
Inhibition of Mitochondrial Neural Cell Death Pathways by Protein Transduction of Bcl-2 Family Proteins 总被引:8,自引:0,他引:8
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer membrane pore formation, through which other pro-apoptotic proteins, e.g., cytochrome c, are released to the cytosol. Bcl-2 also exhibits an indirect antioxidant activity caused by a sub-toxic elevation of mitochondrial production of reactive oxygen species and a compensatory increase in expression of antioxidant gene products. While classic approaches to cytoprotection based on Bcl-2 family gene delivery have significant limitations, cellular protein transduction represents a new and exciting approach utilizing peptides and proteins as drugs with intracellular targets. The mechanism by which proteins with transduction domains are taken up by cells and delivered to their targets is controversial but usually involves endocytosis. The effectiveness of transduced proteins may therefore be limited by their release from endosomes into the cytosol. 相似文献
20.
Elizabeth Wen Sun Monica L. Wagner Amanda Maize Doris Kemler Elisabeth Garland-Kuntz Li Xu Zhao-Qing Luo Peter J. Hollenbeck 《PloS one》2013,8(4)
During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA– mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA−.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA− infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility dramatically affected. 相似文献