首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Participation of nuclear genes in chloroplast gene expression   总被引:33,自引:0,他引:33  
  相似文献   

11.
12.
The screening for mutants and their subsequent molecular analysis has permitted the identification of a number of genes of Arabidopsis involved in the development and functions of the gynoecium. However, these processes remain far from completely understood. It is clear that in many cases, genetic redundancy and other factors can limit the efficiency of classical mutant screening. We have taken the alternative approach of a reverse genetic analysis of gene function in the Arabidopsis gynoecium. A high-throughput fluorescent differential display screen performed between two Arabidopsis floral homeotic mutants has permitted the identification of a number of genes that are specifically or preferentially expressed in the gynoecium. Here, we present the results of this screen and a detailed characterization of the expression profiles of the genes identified. Our expression analysis makes novel use of several Arabidopsis floral homeotic mutants to provide floral organ-specific gene expression profiles. The results of these studies permit the efficient targeting of effort into a functional analysis of gynoecium-expressed genes.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus and the chloroplast. To ensure that the photosynthetic complexes are assembled stoichiometrically and to enable their rapid reorganization in response to a changing environment, the plastids emit signals that regulate nuclear gene expression to match the status of the plastids. One of the plastid signals, the chlorophyll intermediate Mg-ProtoporphyrinIX (Mg-ProtoIX) accumulates under stress conditions and acts as a negative regulator of photosynthetic gene expression. By taking advantage of the photoreactive property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast, transmitting the plastid signal to the cytosol. Our results from the Mg-ProtoIX over- and underaccumulating mutants copper response defect and genome uncoupled5, respectively, demonstrate that the expression of both nuclear- and plastid-encoded photosynthesis genes is regulated by the accumulation of Mg-ProtoIX. Thus, stress-induced accumulation of the signaling metabolite Mg-ProtoIX coordinates nuclear and plastidic photosynthetic gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号