首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As obligate intracellular parasites, viruses exploit diverse cellular signaling machineries, including the mitogen-activated protein-kinase pathway, during their infections. We have demonstrated previously that the open reading frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus interacts with p90 ribosomal S6 kinases (RSKs) and strongly stimulates their kinase activities (Kuang, E., Tang, Q., Maul, G. G., and Zhu, F. (2008) J. Virol. 82 ,1838 -1850). Here, we define the mechanism by which ORF45 activates RSKs. We demonstrated that binding of ORF45 to RSK increases the association of extracellular signal-regulated kinase (ERK) with RSK, such that ORF45, RSK, and ERK formed high molecular mass protein complexes. We further demonstrated that the complexes shielded active pERK and pRSK from dephosphorylation. As a result, the complex-associated RSK and ERK were activated and sustained at high levels. Finally, we provide evidence that this mechanism contributes to the sustained activation of ERK and RSK in Kaposi sarcoma-associated herpesvirus lytic replication.The extracellular signal-regulated kinase (ERK)2 mitogen-activated protein kinase (MAPK) signaling pathway has been implicated in diverse cellular physiological processes including proliferation, survival, growth, differentiation, and motility (1-4) and is also exploited by a variety of viruses such as Kaposi sarcoma-associated herpesvirus (KSHV), human cytomegalovirus, human immunodeficiency virus, respiratory syncytial virus, hepatitis B virus, coxsackie, vaccinia, coronavirus, and influenza virus (5-17). The MAPK kinases relay the extracellular signaling through sequential phosphorylation to an array of cytoplasmic and nuclear substrates to elicit specific responses (1, 2, 18). Phosphorylation of MAPK is reversible. The kinetics of deactivation or duration of signaling dictates diverse biological outcomes (19, 20). For example, sustained but not transient activation of ERK signaling induces the differentiation of PC12 cells into sympathetic-like neurons and transformation of NIH3T3 cells (20-22). During viral infection, a unique biphasic ERK activation has been observed for some viruses (an early transient activation triggered by viral binding or entry and a late sustained activation correlated with viral gene expression), but the responsible viral factors and underlying mechanism for the sustained ERK activation remain largely unknown (5, 8, 13, 23).The p90 ribosomal S6 kinases (RSKs) are a family of serine/threonine kinases that lie at the terminus of the ERK pathway (1, 24-26). In mammals, four isoforms are known, RSK1 to RSK4. Each one has two catalytically functional kinase domains, the N-terminal kinase domain (NTKD) and C-terminal kinase domain (CTKD) as well as a linker region between the two. The NTKD is responsible for phosphorylation of exogenous substrates, and the CTKD and linker region regulate RSK activation (1, 24, 25). In quiescent cells ERK binds to the docking site in the C terminus of RSK (27-29). Upon mitogen stimulation, ERK is activated by its upstream MAPK/ERK kinase (MEK). The active ERK phosphorylates Thr-359/Ser-363 of RSK in the linker region (amino acid numbers refer to human RSK1) and Thr-573 in the CTKD activation loop. The activated CTKD then phosphorylates Ser-380 in the linker region, creating a docking site for 3-phosphoinositide-dependent protein kinase-1. The 3-phosphoinositide-dependent protein kinase-1 phosphorylates Ser-221 of RSK in the activation loop and activates the NTKD. The activated NTKD autophosphorylates the serine residue near the ERK docking site, causing a transient dissociation of active ERK from RSK (25, 26, 28). The stimulation of quiescent cells by a mitogen such as epidermal growth factor or a phorbol ester such as 12-O-tetradecanoylphorbol-13-acetate (TPA) usually results in a transient RSK activation that lasts less than 30 min. RSKs have been implicated in regulating cell survival, growth, and proliferation. Mutation or aberrant expression of RSK has been implicated in several human diseases including Coffin-Lowry syndrome and prostate and breast cancers (1, 24, 25, 30-32).KSHV is a human DNA tumor virus etiologically linked to Kaposi sarcoma, primary effusion lymphoma, and a subset of multicentric Castleman disease (33, 34). Infection and reactivation of KSHV activate multiple MAPK pathways (6, 12, 35). Noticeably, the ERK/RSK activation is sustained late during KSHV primary infection and reactivation from latency (5, 6, 12, 23), but the mechanism of the sustained ERK/RSK activation is unclear. Recently, we demonstrated that ORF45, an immediate early and also virion tegument protein of KSHV, interacts with RSK1 and RSK2 and strongly stimulates their kinase activities (23). We also demonstrated that the activation of RSK plays an essential role in KSHV lytic replication (23). In the present study we determined the mechanism of ORF45-induced sustained ERK/RSK activation. We found that ORF45 increases the association of RSK with ERK and protects them from dephosphorylation, causing sustained activation of both ERK and RSK.  相似文献   

2.
Zinc is hypothesized to be co-released with glutamate at synapses of the central nervous system. Zinc binds to NR1/NR2A N-methyl-d-aspartate (NMDA) receptors with high affinity and inhibits NMDAR function in a voltage-independent manner. The serine protease plasmin can cleave a number of substrates, including protease-activated receptors, and may play an important role in several disorders of the central nervous system, including ischemia and spinal cord injury. Here, we demonstrate that plasmin can cleave the native NR2A amino-terminal domain (NR2AATD), removing the functional high affinity Zn2+ binding site. Plasmin also cleaves recombinant NR2AATD at lysine 317 (Lys317), thereby producing a ∼40-kDa fragment, consistent with plasmin-induced NR2A cleavage fragments observed in rat brain membrane preparations. A homology model of the NR2AATD predicts that Lys317 is near the surface of the protein and is accessible to plasmin. Recombinant expression of NR2A with an amino-terminal deletion at Lys317 is functional and Zn2+ insensitive. Whole cell voltage-clamp recordings show that Zn2+ inhibition of agonist-evoked NMDA receptor currents of NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons is significantly reduced by plasmin treatment. Mutating the plasmin cleavage site Lys317 on NR2A to alanine blocks the effect of plasmin on Zn2+ inhibition. The relief of Zn2+ inhibition by plasmin occurs in PAR1-/- cortical neurons and thus is independent of interaction with protease-activated receptors. These results suggest that plasmin can directly interact with NMDA receptors, and plasmin may increase NMDA receptor responses through disruption or removal of the amino-terminal domain and relief of Zn2+ inhibition.N-Methyl-d-aspartate (NMDA)2 receptors are one of three types of ionotropic glutamate receptors that play critical roles in excitatory neurotransmission, synaptic plasticity, and neuronal death (13). NMDA receptors are comprised of glycine-binding NR1 subunits in combination with at least one type of glutamate-binding NR2 subunit (1, 4). Each subunit contains three transmembrane domains, one cytoplasmic re-entrant membrane loop, one bi-lobed domain that forms the ligand binding site, and one bi-lobed amino-terminal domain (ATD), thought to share structural homology to periplasmic amino acid-binding proteins (46). Activation of NMDA receptors requires combined stimulation by glutamate and the co-agonist glycine in addition to membrane depolarization to overcome voltage-dependent Mg2+ block of the ion channel (7). The activity of NMDA receptors is negatively modulated by a variety of extracellular ions, including Mg2+, polyamines, protons, and Zn2+ ions, which can exert tonic inhibition under physiological conditions (1, 4). Several extracellular modulators such as Zn2+ and ifenprodil are thought to act at the ATD of the NMDA receptor (814).Zinc is a transition metal that plays key roles in both catalytic and structural capacities in all mammalian cells (15). Zinc is required for normal growth and survival of cells. In addition, neuronal death in hypoxia-ischemia and epilepsy has been associated with Zn2+ (1618). Abnormal metabolism of zinc may contribute to induction of cytotoxicity in neurodegenerative diseases, such as Alzheimer''s disease, Parkinson''s disease, and amyotrophic lateral sclerosis (19). Zinc is co-released with glutamate at excitatory presynaptic terminals and inhibits native NMDA receptor activation (20, 21). Zn2+ inhibits NMDA receptor function through a dual mechanism, which includes voltage-dependent block and voltage-independent inhibition (2224). Voltage-independent Zn2+ inhibition at low nanomolar concentrations (IC50, 20 nm) is observed for NR2A-containing NMDA receptors (2528). Evidence has accumulated that the amino-terminal domain of the NR2A subunit controls high-affinity Zn2+ inhibition of NMDA receptors, and several histidine residues in this region may constitute part of an NR2A-specific Zn2+ binding site (8, 9, 11, 12). For the NR2A subunit, several lines of evidence suggest that Zn2+ acts by enhancing proton inhibition (8, 11, 29, 30).Serine proteases present in the circulation, mast cells, and elsewhere signal directly to cells by cleaving protease-activated receptors (PARs), members of a subfamily of G-protein-coupled receptors. Cleavage exposes a tethered ligand domain that binds to and activates the cleaved receptors (31, 32). Protease receptor activation has been studied extensively in relation to coagulation and thrombolysis (33). In addition to their circulation in the bloodstream, some serine proteases and PARs are expressed in the central nervous system, and have been suggested to play roles in physiological conditions (e.g. long-term potentiation or memory) and pathophysiological states such as glial scarring, edema, seizure, and neuronal death (31, 3436).Functional interactions between proteases and NMDA receptors have previously been suggested. Earlier studies reported that the blood-derived serine protease thrombin potentiates NMDA receptor response more than 2-fold through activation of PAR1 (37). Plasmin, another serine protease, similarly potentiates NMDA receptor response (38). Tissue-plasminogen activator (tPA), which catalyzes the conversion of the zymogen precursor plasminogen to plasmin and results in PAR1 activation, also interacts with and cleaves the ATD of the NR1 subunit of the NMDA receptor (39, 40). This raises the possibility that plasmin may also interact directly with the NMDA receptor subunits to modulate receptor response. We therefore investigated the ability of plasmin to cleave the NR2A NMDA receptor subunit. We found that nanomolar concentrations of plasmin can cleave within the ATD, a region that mediates tonic voltage-independent Zn2+ inhibition of NR2A-containing NMDA receptors. We hypothesized that plasmin cleavage reduces the Zn2+-mediated inhibition of NMDA receptors by removing the Zn2+ binding domain. In the present study, we have demonstrated that Zn2+ inhibition of agonist-evoked NMDA currents is decreased significantly by plasmin treatment in recombinant NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons. These concentrations of plasmin may be pathophysiologically relevant in situations in which the blood-brain barrier is compromised, which could allow blood-derived plasmin to enter brain parenchyma at concentrations in excess of these that can cleave NR2A. Thus, ability of plasmin to potentiate NMDA function through the relief of the Zn2+ inhibition could exacerbate the harmful actions of NMDA receptor overactivation in pathological situations. In addition, if newly cleaved NR2AATD enters the bloodstream during ischemic injury, it could serve as a biomarker of central nervous system injury.  相似文献   

3.
JC virus (JCV) is a human polyomavirus and the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection of host cells is dependent on interactions with cell surface asparagine (N)-linked sialic acids and the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR). The 5-HT2AR contains five potential N-linked glycosylation sites on the extracellular N terminus. Glycosylation of other serotonin receptors is essential for expression, ligand binding, and receptor function. Also, glycosylation of cellular receptors has been reported to be important for JCV infection. Therefore, we hypothesized that the 5-HT2AR N-linked glycosylation sites are required for JCV infection. Treatment of 5-HT2AR-expressing cells with tunicamycin, an inhibitor of N-linked glycosylation, reduced JCV infection. Individual mutation of each of the five N-linked glycosylation sites did not affect the capacity of 5-HT2AR to support JCV infection and did not alter the cell surface expression of the receptor. However, mutation of all five N-linked glycosylation sites simultaneously reduced the capacity of 5-HT2AR to support infection and altered the cell surface expression. Similarly, tunicamycin treatment reduced the cell surface expression of 5-HT2AR. Mutation of all five N-linked glycosylation sites or tunicamycin treatment of cells expressing wild-type 5-HT2AR resulted in an altered electrophoretic mobility profile of the receptor. Treatment of cells with PNGase F, to remove N-linked oligosaccharides from the cell surface, did not affect JCV infection in 5-HT2AR-expressing cells. These data affirm the importance of 5-HT2AR as a JCV receptor and demonstrate that the sialic acid component of the receptor is not directly linked to 5-HT2AR.The initial interaction between virus and host occurs via molecular interactions of viral attachment proteins and receptors on host cells. Therefore, receptor recognition is a critical host cell determinant and may play a key regulatory role in viral pathogenesis. The polyomavirus JC virus (JCV) is a ubiquitous human pathogen (21, 25, 32) that is initially subclinical yet establishes a persistent infection in the kidney (11). In immunosuppressed individuals JCV can become reactivated, leading to infection in the central nervous system (CNS) (13-15, 20), where the virus specifically targets glial cells, including astrocytes and the myelin-producing cells, oligodendrocytes (40, 48). JCV infection and cytolytic destruction of oligodendroglia cause the fatal disease progressive multifocal leukoencephalopathy (PML) (1, 22). The most common cause of PML is associated with human immunodeficiency virus (HIV) and AIDS (10, 23). However, in recent years PML has been reported in patients receiving immunosuppressive therapies for autoimmune diseases such as Crohn''s disease (44), multiple sclerosis (MS) (24, 26, 28, 47), systemic lupus erythematosus (5, 33), and rheumatoid arthritis (5, 19, 37). The prognosis of PML is bleak, as the disease progresses rapidly and usually proves fatal within 1 year of the onset of symptoms. While current treatment options for PML are limited (23), recent studies suggest that mirtazapine, a serotonin receptor antagonist, may be capable of slowing the progression of PML (6, 27, 45, 46).JCV has a nonenveloped, icosahedral capsid that encapsidates a circular double-stranded DNA (dsDNA) genome (39). JCV attachment to cells is mediated by an N-linked glycoprotein with either α(2,3)- or α(2,6)-linked sialic acid (16, 31), suggesting that N-linked glycosylation of cellular receptors is important for JCV infection. N-linked glycosylation is a posttranslational process by which oligosaccharides are added to asparagine residues, and this modification is important for protein processing, folding, expression, and function (43). Previous studies from our laboratory revealed that the JCV also requires the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR) to mediate JCV infection (18, 35, 38), while others report that JCV infection can occur in the absence of 5-HT2AR (7, 8). 5-HT2AR is a seven-transmembrane-spanning G-protein-coupled receptor that belongs to a large family of 5-HT serotonin receptors. 5-HT2AR is abundantly expressed on cells in the brain (4), including glial cells (3), and in the kidney (4), which parallels the sites of JCV infection. N-linked glycosylation plays a key regulatory role in the function of serotonin receptors. Mutation of N-linked glycosylation sites in human 5-HT3AR and 5-HT5AR results in decreased expression at the plasma membrane, which is critical for receptor function (17, 34). N-linked glycosylation of murine 5-HT3AR regulates plasma membrane targeting, ligand binding, Ca2+ flux, and receptor trafficking (36), suggesting that glycosylation is essential for expression and function of serotonin receptors.While previous studies have concluded that JCV utilizes an N-linked glycoprotein with α(2,3)-linked sialic acid (31) or α(2,6)-linked sialic acid (16) and 5-HT2AR (18) to initiate infection in host cells, the mechanism(s) by which JCV engages its cellular receptors and the importance of receptor glycosylation remain unclear. 5-HT2AR contains potential asparagine (N)-linked glycosylation sites, five of which are predicted to be expressed in the extracellular amino-terminal region, where they could be accessible to the virus (2). The goal of this study was to determine whether potential N-linked glycosylation sites expressed in 5-HT2AR are required for JCV infection. We found that N-linked glycosylation of 5-HT2AR is important for receptor expression but not necessary for JCV infection.  相似文献   

4.
5.
Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity.Glycan-binding proteins of the galectin family have been increasingly studied as regulators of the immune response and potential therapeutic agents for autoimmune disorders (1). To date, 15 galectins have been identified and classified according with the structural organization of their distinctive monomeric or dimeric carbohydrate recognition domain for β-galactosides (2, 3). Galectins are secreted by unconventional mechanisms and once outside the cells bind to and cross-link multiple glycoconjugates both at the cell surface and at the extracellular matrix, modulating processes as diverse as cell adhesion, migration, proliferation, differentiation, and apoptosis (410). Several galectins have been involved in T cell homeostasis because of their capability to kill thymocytes, activated T cells, and T cell lines (1116). Pro-apoptotic galectins might contribute to shape the T cell repertoire in the thymus by negative selection, restrict the immune response by eliminating activated T cells at the periphery (1), and help cancer cells to escape the immune system by eliminating cancer-infiltrating T cells (17). They have also a promising therapeutic potential to eliminate abnormally activated T cells and inflammatory cells (1). Studies on the mostly explored galectins, Gal-1, -3, and -9 (14, 15, 1820), as well as in Gal-2 (13), suggest immunosuppressive complementary roles inducing different pathways to apoptosis. Galectin-8 (Gal-8)4 is one of the most widely expressed galectins in human tissues (21, 22) and cancerous cells (23, 24). Depending on the cell context and mode of presentation, either as soluble stimulus or extracellular matrix, Gal-8 can promote cell adhesion, spreading, growth, and apoptosis (6, 7, 9, 10, 22, 25). Its role has been mostly studied in relation to tumor malignancy (23, 24). However, there is some evidence regarding a role for Gal-8 in T cell homeostasis and autoimmune or inflammatory disorders. For instance, the intrathymic expression and pro-apoptotic effect of Gal-8 upon CD4highCD8high thymocytes suggest a role for Gal-8 in shaping the T cell repertoire (16). Gal-8 could also modulate the inflammatory function of neutrophils (26), Moreover Gal-8-blocking agents have been detected in chronic autoimmune disorders (10, 27, 28). In rheumatoid arthritis, Gal-8 has an anti-inflammatory action, promoting apoptosis of synovial fluid cells, but can be counteracted by a specific rheumatoid version of CD44 (CD44vRA) (27). In systemic lupus erythematosus (SLE), a prototypic autoimmune disease, we recently described function-blocking autoantibodies against Gal-8 (10, 28). Thus it is important to define the role of Gal-8 and the influence of anti-Gal-8 autoantibodies in immune cells.In Jurkat T cells, we previously reported that Gal-8 interacts with specific integrins, such as α1β1, α3β1, and α5β1 but not α4β1, and as a matrix protein promotes cell adhesion and asymmetric spreading through activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) (10). These early effects occur within 5–30 min. However, ERK1/2 signaling supports long term processes such as T cell survival or death, depending on the moment of the immune response. During T cell activation, ERK1/2 contributes to enhance the expression of interleukin-2 (IL-2) required for T cell clonal expansion (29). It also supports T cell survival against pro-apoptotic Fas ligand (FasL) produced by themselves and by other previously activated T cells (30, 31). Later on, ERK1/2 is required for activation-induced cell death, which controls the extension of the immune response by eliminating recently activated and restimulated T cells (32, 33). In activation-induced cell death, ERK1/2 signaling contributes to enhance the expression of FasL and its receptor Fas/CD95 (32, 33), which constitute a preponderant pro-apoptotic system in T cells (34). Here, we ask whether Gal-8 is able to modulate the intensity of ERK1/2 signaling enough to participate in long term processes involved in T cell homeostasis.The functional integration of ERK1/2 and PKA signaling (35) deserves special attention. cAMP/PKA signaling plays an immunosuppressive role in T cells (36) and is altered in SLE (37). Phosphodiesterases (PDEs) that degrade cAMP release the immunosuppressive action of cAMP/PKA during T cell activation (38, 39). PKA has been described to control the activity of ERK1/2 either positively or negatively in different cells and processes (35). A little explored integration among ERK1/2 and PKA occurs via phosphatidic acid (PA) and PDE signaling. Several stimuli activate phospholipase D (PLD) that hydrolyzes phosphatidylcholine into PA and choline. Such PLD-generated PA plays roles in signaling interacting with a variety of targeting proteins that bear PA-binding domains (40). In this way PA recruits Raf-1 to the plasma membrane (41). It is also converted by phosphatidic acid phosphohydrolase (PAP) activity into diacylglycerol (DAG), which among other functions, recruits and activates the GTPase Ras (42). Both Ras and Raf-1 are upstream elements of the ERK1/2 activation pathway (43). In addition, PA binds to and activates PDEs of the type 4 subfamily (PDE4s) leading to decreased cAMP levels and PKA down-regulation (44). The regulation and role of PA-mediated control of ERK1/2 and PKA remain relatively unknown in T cell homeostasis, because it is also unknown whether galectins stimulate the PLD/PA pathway.Here we found that Gal-8 induces apoptosis in Jurkat T cells by triggering cross-talk between PKA and ERK1/2 pathways mediated by PLD-generated PA. Our results for the first time show that a galectin increases the PA levels, down-regulates the cAMP/PKA system by enhancing rolipram-sensitive PDE activity, and induces an ERK1/2-dependent expression of the pro-apoptotic factor FasL. The enhanced PDE activity induced by Gal-8 is required for the activation of ERK1/2 that finally leads to apoptosis. Gal-8 also induces apoptosis in human peripheral blood mononuclear cells (PBMC), especially after activating T cells with anti-CD3/CD28. Therefore, Gal-8 shares with other galectins the property of killing activated T cells contributing to the T cell homeostasis. The pathway involves a particularly integrated signaling context, engaging PLD/PA, cAMP/PKA, and ERK1/2, which so far has not been reported for galectins. The pro-apoptotic function of Gal-8 also seems to be unique in its susceptibility to inhibition by anti-Gal-8 autoantibodies.  相似文献   

6.
NHE5 is a brain-enriched Na+/H+ exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.Neurons and glial cells in the central and peripheral nervous systems are especially sensitive to perturbations of pH (1). Many voltage- and ligand-gated ion channels that control membrane excitability are sensitive to changes in cellular pH (1-3). Neurotransmitter release and uptake are also influenced by cellular and organellar pH (4, 5). Moreover, the intra- and extracellular pH of both neurons and glia are modulated in a highly transient and localized manner by neuronal activity (6, 7). Thus, neurons and glia require sophisticated mechanisms to finely tune ion and pH homeostasis to maintain their normal functions.Na+/H+ exchangers (NHEs)3 were originally identified as a class of plasma membrane-bound ion transporters that exchange extracellular Na+ for intracellular H+, and thereby regulate cellular pH and volume. Since the discovery of NHE1 as the first mammalian NHE (8), eight additional isoforms (NHE2-9) that share 25-70% amino acid identity have been isolated in mammals (9, 10). NHE1-5 commonly exhibit transporter activity across the plasma membrane, whereas NHE6-9 are mostly found in organelle membranes and are believed to regulate organellar pH in most cell types at steady state (11). More recently, NHE10 was identified in human and mouse osteoclasts (12, 13). However, the cDNA encoding NHE10 shares only a low degree of sequence similarity with other known members of the NHE gene family, raising the possibility that this sodium-proton exchanger may belong to a separate gene family distantly related to NHE1-9 (see Ref. 9).NHE gene family members contain 12 putative transmembrane domains at the N terminus followed by a C-terminal cytosolic extension that plays a role in regulation of the transporter activity by protein-protein interactions and phosphorylation. NHEs have been shown to regulate the pH environment of synaptic nerve terminals and to regulate the release of neurotransmitters from multiple neuronal populations (14-16). The importance of NHEs in brain function is further exemplified by the findings that spontaneous or directed mutations of the ubiquitously expressed NHE1 gene lead to the progression of epileptic seizures, ataxia, and increased mortality in mice (17, 18). The progression of the disease phenotype is associated with loss of specific neuron populations and increased neuronal excitability. However, NHE1-null mice appear to develop normally until 2 weeks after birth when symptoms begin to appear. Therefore, other mechanisms may compensate for the loss of NHE1 during early development and play a protective role in the surviving neurons after the onset of the disease phenotype.NHE5 was identified as a unique member of the NHE gene family whose mRNA is expressed almost exclusively in the brain (19, 20), although more recent studies have suggested that NHE5 might be functional in other cell types such as sperm (21, 22) and osteosarcoma cells (23). Curiously, mutations found in several forms of congenital neurological disorders such as spinocerebellar ataxia type 4 (24-26) and autosomal dominant cerebellar ataxia (27-29) have been mapped to chromosome 16q22.1, a region containing NHE5. However, much remains unknown as to the molecular regulation of NHE5 and its role in brain function.Very few if any proteins work in isolation. Therefore identification and characterization of binding proteins often reveal novel functions and regulation mechanisms of the protein of interest. To begin to elucidate the biological role of NHE5, we have started to explore NHE5-binding proteins. Previously, β-arrestins, multifunctional scaffold proteins that play a key role in desensitization of G-protein-coupled receptors, were shown to directly bind to NHE5 and promote its endocytosis (30). This study demonstrated that NHE5 trafficking between endosomes and the plasma membrane is regulated by protein-protein interactions with scaffold proteins. More recently, we demonstrated that receptor for activated C-kinase 1 (RACK1), a scaffold protein that links signaling molecules such as activated protein kinase C, integrins, and Src kinase (31), directly interacts with and activates NHE5 via integrin-dependent and independent pathways (32). These results further indicate that NHE5 is partly associated with focal adhesions and that its targeting to the specialized microdomain of the plasma membrane may be regulated by various signaling pathways.Secretory carrier membrane proteins (SCAMPs) are a family of evolutionarily conserved tetra-spanning integral membrane proteins. SCAMPs are found in multiple organelles such as the Golgi apparatus, trans-Golgi network, recycling endosomes, synaptic vesicles, and the plasma membrane (33, 34) and have been shown to play a role in exocytosis (35-38) and endocytosis (39). Currently, five isoforms of SCAMP have been identified in mammals. The extended N terminus of SCAMP1-3 contain multiple Asn-Pro-Phe (NPF) repeats, which may allow these isoforms to participate in clathrin coat assembly and vesicle budding by binding to Eps15 homology (EH)-domain proteins (40, 41). Further, SCAMP2 was shown recently to bind to the small GTPase Arf6 (38), which is believed to participate in traffic between the recycling endosomes and the cell surface (42, 43). More recent studies have suggested that SCAMPs bind to organellar membrane type NHE7 (44) and the serotonin transporter SERT (45) and facilitate targeting of these integral membrane proteins to specific intracellular compartments. We show in the current study that SCAMP2 binds to NHE5, facilitates the cell-surface targeting of NHE5, and elevates Na+/H+ exchange activity at the plasma membrane, whereas expression of a SCAMP2 deletion mutant lacking the N-terminal domain containing the NPF repeats suppresses the effect. Further we show that this activity of SCAMP2 requires an active form of a small GTPase Arf6, but not Rab11. We propose a model in which SCAMPs bind to NHE5 in the endosomal compartment and control its cell-surface abundance via an Arf6-dependent pathway.  相似文献   

7.
Rapid protein kinase D (PKD) activation and phosphorylation via protein kinase C (PKC) have been extensively documented in many cell types cells stimulated by multiple stimuli. In contrast, little is known about the role and mechanism(s) of a recently identified sustained phase of PKD activation in response to G protein-coupled receptor agonists. To elucidate the role of biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in these cells potently enhanced duration of ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. Cell treatment with the preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD activation induced by bombesin stimulation for <15 min but did not prevent PKD catalytic activation induced by bombesin stimulation for longer times (>60 min). The existence of sequential PKC-dependent and PKC-independent PKD activation was demonstrated in 3T3 cells stimulated with various concentrations of bombesin (0.3–10 nm) or with vasopressin, a different Gq-coupled receptor agonist. To gain insight into the mechanisms involved, we determined the phosphorylation state of the activation loop residues Ser744 and Ser748. Transphosphorylation targeted Ser744, whereas autophosphorylation was the predominant mechanism for Ser748 in cells stimulated with Gq-coupled receptor agonists. We next determined which phase of PKD activation is responsible for promoting enhanced ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. We show, for the first time, that the PKC-independent phase of PKD activation mediates prolonged ERK signaling and progression to DNA synthesis in response to bombesin or vasopressin through a pathway that requires epidermal growth factor receptor-tyrosine kinase activity. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.The understanding of the mechanisms that control cell proliferation requires the identification of the molecular pathways that govern the transition of quiescent cells into the S phase of the cell cycle. In this context the activation and phosphorylation of protein kinase D (PKD),4 the founding member of a new protein kinase family within the Ca2+/calmodulin-dependent protein kinase (CAMK) group and separate from the previously identified PKCs (for review, see Ref. 1), are attracting intense attention. In unstimulated cells, PKD is in a state of low catalytic (kinase) activity maintained by autoinhibition mediated by the N-terminal domain, a region containing a repeat of cysteinerich zinc finger-like motifs and a pleckstrin homology (PH) domain (14). Physiological activation of PKD within cells occurs via a phosphorylation-dependent mechanism first identified in our laboratory (57). In response to cellular stimuli (1), including phorbol esters, growth factors (e.g. PDGF), and G protein-coupled receptor (GPCR) agonists (6, 816) that signal through Gq, G12, Gi, and Rho (11, 1519), PKD is converted into a form with high catalytic activity, as shown by in vitro kinase assays performed in the absence of lipid co-activators (5, 20).During these studies multiple lines of evidence indicated that PKC activity is necessary for rapid PKD activation within intact cells. For example, rapid PKD activation was selectively and potently blocked by cell treatment with preferential PKC inhibitors (e.g. GF109203X or Gö6983) that do not directly inhibit PKD catalytic activity (5, 20), implying that PKD activation in intact cells is mediated directly or indirectly through PKCs. Many reports demonstrated the operation of a rapid PKC/PKD signaling cascade induced by multiple GPCR agonists and other receptor ligands in a range of cell types (for review, see Ref. 1). Our previous studies identified Ser744 and Ser748 in the PKD activation loop (also referred as activation segment or T-loop) as phosphorylation sites critical for PKC-mediated PKD activation (1, 4, 7, 17, 21). Collectively, these findings demonstrated the existence of a rapidly activated PKC-PKD protein kinase cascade(s). In a recent study we found that the rapid PKC-dependent PKD activation was followed by a late, PKC-independent phase of catalytic activation and phosphorylation induced by stimulation of the bombesin Gq-coupled receptor ectopically expressed in COS-7 cells (22). This study raised the possibility that PKD mediates rapid biological responses downstream of PKCs, whereas, in striking contrast, PKD could mediate long term responses through PKC-independent pathways. Despite its potential importance for defining the role of PKC and PKD in signal transduction, this hypothesis has not been tested in any cell type.Accumulating evidence demonstrates that PKD plays an important role in several cellular processes and activities, including signal transduction (14, 2325), chromatin organization (26), Golgi function (27, 28), gene expression (2931), immune regulation (26), and cell survival, adhesion, motility, differentiation, DNA synthesis, and proliferation (for review, see Ref. 1). In Swiss 3T3 fibroblasts, a cell line used extensively as a model system to elucidate mechanisms of mitogenic signaling (3234), PKD expression potently enhances ERK activation, DNA synthesis, and cell proliferation induced by Gq-coupled receptor agonists (8, 14). Here, we used this model system to elucidate the role and mechanism(s) of biphasic PKD activation. First, we show that the Gq-coupled receptor agonists bombesin and vasopressin, in contrast to phorbol esters, specifically induce PKD activation through early PKC-dependent and late PKC-independent mechanisms in Swiss 3T3 cells. Subsequently, we demonstrate for the first time that the PKC-independent phase of PKD activation is responsible for promoting ERK signaling and progression to DNA synthesis through an epidermal growth factor receptor (EGFR)-dependent pathway. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.  相似文献   

8.
9.
We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor.Dopamine receptors (DARs)3 are members of the GPCR superfamily and consist of five structurally distinct subtypes (1, 2). These can be divided into two subfamilies on the basis of their structure and pharmacological and transductional properties (3). The “D1-like” subfamily includes the D1 and D5 receptors, which couple to the heterotrimeric G proteins GS or GOLF to stimulate adenylyl cyclase activity and raise intracellular levels of cAMP. The D2-like subfamily includes the D2, D3, and D4 receptors, which couple to inhibitory Gi/o proteins to reduce adenylyl cyclase activity as well as modulate voltage-gated K+ or Ca2+ channels. Within the central nervous system, these receptors modulate movement, learning and memory, reward and addiction, cognition, and certain neurendocrine functions. As with other GPCRs, the DARs are subject to a wide variety of regulatory mechanisms, which can either positively or negatively modulate their expression and functional activity (4).Upon agonist activation, most GPCRs undergo desensitization, a homeostatic process that results in a waning of receptor response despite continued agonist stimulation (5, 6). Desensitization is believed to involve the phosphorylation of receptors by either G protein-coupled receptor kinases (GRKs) and/or second messenger-activated kinases such as PKA or PKC. Homologous forms of desensitization involve only agonist-activated receptors and appear to be primarily mediated by GRKs. In many cases, GRK-mediated phosphorylation has been shown to decrease receptor/G protein interactions and also initiate arrestin binding, which further promotes endocytosis of the receptor through clathrin-coated pits (79). Once internalized, GPCRs can engage additional signaling pathways (10), be sorted for recycling to the plasma membrane, or targeted for degradation (79). Among the DARs, the D2 receptor is arguably one of the most validated drug targets in neurology and psychiatry. For instance, all receptor-based anti-parkinsonian drugs work via stimulating the D2 DAR (11), whereas all Food and Drug Administration-approved antipsychotic agents are antagonists of this receptor subtype (12, 13). The D2 DAR is also therapeutically targeted in other disorders such as restless legs syndrome, tardive dyskinesia, Tourette syndrome, and hyperprolactinemia. As such, more knowledge concerning the regulation of the D2 DAR could be helpful in improving current therapies or devising new treatment strategies.In comparison with other GPCRs, however, detailed mechanistic information concerning regulation of the D2 DAR is mostly lacking, although some progress has recently been made. For instance, we (14) and others (15) have found that PKC-mediated phosphorylation can regulate both D2 receptor desensitization and trafficking. In our PKC study, we mapped out all of the PKC phosphorylation sites within the third intracellular loop (IC3) of the receptor, and we determined the existence of two PKC phosphorylation domains. Both of these domains were found to regulate receptor sequestration, whereas only one domain regulated functional uncoupling in response to PKC activation (14). In response to agonist activation, the D2 DAR has also been shown to undergo functional desensitization (4), although this has not been intensively investigated. More thoroughly examined is the observation that agonist stimulation of the D2 DAR promotes its sequestration from the cell surface into vesicular compartments that appear distinct from those harboring internalized D1 DARs or β-adrenergic receptors (1621). In addition to uncertainty over the endocytic pathway involved, controversy also exists as to whether or not D2 DAR internalization is dynamin-dependent and whether the internalized receptors can partially or completely recycle to the cell surface or, alternatively, if they undergo degradation (19, 2124). The D2 DAR does appear to undergo GRK-mediated phosphorylation upon agonist activation, which has been suggested to promote arrestin association and receptor sequestration (16, 19, 25), although this process has not been studied in detail and its relationship to functional receptor desensitization is unknown.In this study, we have further characterized GRK-mediated phosphorylation of the D2 DAR and determined its role in agonist-induced receptor desensitization, internalization, and recycling. Using site-directed mutagenesis, we have mapped out all of the GRK phosphorylation sites within the D2 DAR and determined that these are distinct from the PKC phosphorylation sites. Using a GRK phosphorylation-null mutant receptor, we found, surprisingly, that GRK-mediated phosphorylation is not actually required for agonist-induced receptor desensitization, arrestin association, or internalization. In contrast, we found that the GRK phosphorylation-null receptor was impaired in its ability to recycle to the cell surface subsequent to internalization and was degraded to a greater extent in comparison with the wild-type receptor. These results suggest that GRK-mediated phosphorylation of the D2 DAR regulates its intracellular trafficking or sorting once internalized, a novel mechanism for GRK-mediated regulation of GPCR function.  相似文献   

10.
11.
12.
13.
The elevation of [cAMP]i is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492, in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE1 and forskolin-induced phosphorylation of Ser312 and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE1-evoked cAMP accumulation by thrombin required both Gi and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492 leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding.Upon vascular injury, platelets adhere to the newly exposed subintimal collagen and undergo activation leading to platelet spreading to cover the damaged region and release of thrombogenic factors such as ADP and thromboxane A2. In addition, platelets are activated by thrombin, which is generated as a result of activation of the coagulation pathway, and stimulates platelets by cleaving the protease-activated receptors (PAR),2 PAR-1 and PAR-4. The final common pathway is the exposure of fibrinogen binding sites on integrin αIIbβ3 resulting in platelet aggregation and thrombus formation.Thrombin-mediated cleavage of PARs leads to activation of phospholipase C β (PLC), hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate and a subsequent increase in [Ca2+]i and activation of protein kinase C (PKC). Protein kinase C contributes to platelet activation both directly, through affinity regulation of the fibrinogen receptor, integrin αIIbβ3 (1), and indirectly by enhancing degranulation (2). Thrombin also stimulates activation of PI 3-kinases and subsequent generation of PI (3, 4, 5) trisphosphate and PI (3, 4) bisphosphate (3), which recruit protein kinase B (PKB) to the plasma membrane where it becomes phosphorylated and activated.Platelet activation is opposed by agents that raise intracellular 3′-5′-cyclic adenosine monophosphate ([cAMP]i). cAMP is a powerful inhibitory second messenger that down-regulates platelet function by interfering with Ca2+ homeostasis, degranulation and integrin activation (4). Synthesis of cAMP is stimulated by mediators such as prostaglandin I2 (PGI2), which bind to Gs-coupled receptors leading to activation of adenylate cyclase (AC). This inhibitory pathway is opposed by thrombin, which inhibits the elevation of cAMP indirectly via autocrine activation of the Gi-coupled ADP receptor P2Y12. cAMP signaling is terminated by hydrolysis to biologically inert 5′-AMP by 3′-phosphodiesterases. Platelets express two cAMP phosphodiesterase isoforms, cGMP-stimulated PDE2 and cGMP-inhibited PDE3A. PDE3A is the most abundant isoform in platelets and has a ∼250-fold lower Km for cAMP than PDE2 (4). As a consequence of these properties, PDE3A exerts a greater influence on cAMP homeostasis, particularly at resting levels. The importance of PDE3A in platelet function is further emphasized by the finding that the PDE3A inhibitors cilostamide and milrinone raise basal cAMP levels and strongly inhibit thrombin-induced platelet activation (5). Furthermore, PDE3A-/- mice demonstrate increased resting levels of platelet cAMP and are protected against a model of pulmonary thrombosis (6). In contrast, the PDE2 inhibitor EHNA has no significant effect on cAMP levels and platelet aggregation (7, 8). The activity of PDE3A is therefore essential to maintain low equilibrium levels of cAMP and determine the threshold for platelet activation (7).Like its paralogue PDE3B, it has recently become clear that PDE3A activity can be positively regulated by phosphorylation in platelets and human oocytes (9, 10). There is some evidence that PKB may be involved in this regulation, although the phosphorylation sites are poorly characterized. In contrast, phosphorylation of PDE3A in HeLa cells was stimulated by phorbol esters and blocked by inhibitors of PKC (11). In this study, we aimed to identify the signaling pathways and phosphorylation sites that are involved in regulation of platelet PDE3A. Here, we show strong evidence that PKC, and not PKB, is involved in agonist-stimulated PDE3A phosphorylation on Ser312, Ser428, Ser438, Ser465, and Ser492, leading to an increase in PDE3A activity, 14-3-3 binding and modulation of intracellular cAMP levels.  相似文献   

14.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

15.
16.
17.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

18.
19.
Many G protein-coupled receptors (GPCRs) recycle after agonist-induced endocytosis by a sequence-dependent mechanism, which is distinct from default membrane flow and remains poorly understood. Efficient recycling of the β2-adrenergic receptor (β2AR) requires a C-terminal PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (PDZbd), an intact actin cytoskeleton, and is regulated by the endosomal protein Hrs (hepatocyte growth factor-regulated substrate). The PDZbd is thought to link receptors to actin through a series of protein interaction modules present in NHERF/EBP50 (Na+/H+ exchanger 3 regulatory factor/ezrin-binding phosphoprotein of 50 kDa) family and ERM (ezrin/radixin/moesin) family proteins. It is not known, however, if such actin connectivity is sufficient to recapitulate the natural features of sequence-dependent recycling. We addressed this question using a receptor fusion approach based on the sufficiency of the PDZbd to promote recycling when fused to a distinct GPCR, the δ-opioid receptor, which normally recycles inefficiently in HEK293 cells. Modular domains mediating actin connectivity promoted receptor recycling with similarly high efficiency as the PDZbd itself, and recycling promoted by all of the domains was actin-dependent. Regulation of receptor recycling by Hrs, however, was conferred only by the PDZbd and not by downstream interaction modules. These results suggest that actin connectivity is sufficient to mimic the core recycling activity of a GPCR-linked PDZbd but not its cellular regulation.G protein-coupled receptors (GPCRs)2 comprise the largest family of transmembrane signaling receptors expressed in animals and transduce a wide variety of physiological and pharmacological information. While these receptors share a common 7-transmembrane-spanning topology, structural differences between individual GPCR family members confer diverse functional and regulatory properties (1-4). A fundamental mechanism of GPCR regulation involves agonist-induced endocytosis of receptors via clathrin-coated pits (4). Regulated endocytosis can have multiple functional consequences, which are determined in part by the specificity with which internalized receptors traffic via divergent downstream membrane pathways (5-7).Trafficking of internalized GPCRs to lysosomes, a major pathway traversed by the δ-opioid receptor (δOR), contributes to proteolytic down-regulation of receptor number and produces a prolonged attenuation of subsequent cellular responsiveness to agonist (8, 9). Trafficking of internalized GPCRs via a rapid recycling pathway, a major route traversed by the β2-adrenergic receptor (β2AR), restores the complement of functional receptors present on the cell surface and promotes rapid recovery of cellular signaling responsiveness (6, 10, 11). When co-expressed in the same cells, the δOR and β2AR are efficiently sorted between these divergent downstream membrane pathways, highlighting the occurrence of specific molecular sorting of GPCRs after endocytosis (12).Recycling of various integral membrane proteins can occur by default, essentially by bulk membrane flow in the absence of lysosomal sorting determinants (13). There is increasing evidence that various GPCRs, such as the β2AR, require distinct cytoplasmic determinants to recycle efficiently (14). In addition to requiring a cytoplasmic sorting determinant, sequence-dependent recycling of the β2AR differs from default recycling in its dependence on an intact actin cytoskeleton and its regulation by the conserved endosomal sorting protein Hrs (hepatocyte growth factor receptor substrate) (11, 14). Compared with the present knowledge regarding protein complexes that mediate sorting of GPCRs to lysosomes (15, 16), however, relatively little is known about the biochemical basis of sequence-directed recycling or its regulation.The β2AR-derived recycling sequence conforms to a canonical PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (henceforth called PDZbd), and PDZ-mediated protein association(s) with this sequence appear to be primarily responsible for its endocytic sorting activity (17-20). Fusion of this sequence to the cytoplasmic tail of the δOR effectively re-routes endocytic trafficking of engineered receptors from lysosomal to recycling pathways, establishing the sufficiency of the PDZbd to function as a transplantable sorting determinant (18). The β2AR-derived PDZbd binds with relatively high specificity to the NHERF/EBP50 family of PDZ proteins (21, 22). A well-established biochemical function of NHERF/EBP50 family proteins is to associate integral membrane proteins with actin-associated cytoskeletal elements. This is achieved through a series of protein-interaction modules linking NHERF/EBP50 family proteins to ERM (ezrin-radixin-moesin) family proteins and, in turn, to actin filaments (23-26). Such indirect actin connectivity is known to mediate other effects on plasma membrane organization and function (23), however, and NHERF/EBP50 family proteins can bind to additional proteins potentially important for endocytic trafficking of receptors (23, 25). Thus it remains unclear if actin connectivity is itself sufficient to promote sequence-directed recycling of GPCRs and, if so, if such connectivity recapitulates the normal cellular regulation of sequence-dependent recycling. In the present study, we took advantage of the modular nature of protein connectivity proposed to mediate β2AR recycling (24, 26), and extended the opioid receptor fusion strategy used successfully for identifying diverse recycling sequences in GPCRs (27-29), to address these fundamental questions.Here we show that the recycling activity of the β2AR-derived PDZbd can be effectively bypassed by linking receptors to ERM family proteins in the absence of the PDZbd itself. Further, we establish that the protein connectivity network can be further simplified by fusing receptors to an interaction module that binds directly to actin filaments. We found that bypassing the PDZ-mediated interaction using either domain is sufficient to mimic the ability of the PDZbd to promote efficient, actin-dependent recycling of receptors. Hrs-dependent regulation, however, which is characteristic of sequence-dependent recycling of wild-type receptors, was recapitulated only by the fused PDZbd and not by the proposed downstream interaction modules. These results support a relatively simple architecture of protein connectivity that is sufficient to mimic the core recycling activity of the β2AR-derived PDZbd, but not its characteristic cellular regulation. Given that an increasing number of GPCRs have been shown to bind PDZ proteins that typically link directly or indirectly to cytoskeletal elements (17, 27, 30-32), the present results also suggest that actin connectivity may represent a common biochemical principle underlying sequence-dependent recycling of various GPCRs.  相似文献   

20.
Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin αV subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin αV subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF.Extracellular proteolysis is an essential physiological process that controls the immediate cellular environment and thus plays a key role in cellular behavior and survival (1). The members of the matrix metalloproteinase (MMP)2 family of zinc-dependent endopeptidases are major mediators of extracellular proteolysis by promoting the degradation of extracellular matrix (ECM) components and cell surface-associated proteins (2, 3). Each one of these enzymes is negatively regulated by tissue inhibitors of metalloproteinases (TIMPs) (4) and is secreted as a zymogen (pro-MMPs) that is activated in the extracellular space (57). This mechanism is an important form of regulation of gelatinase activity and in consequence, highly significant for ECM homeostasis. Among the members of the MMP family, the metalloproteinase type 2 (MMP-2 or gelatinase A) is known to be a key player in many physiological and pathological processes, such as cell migration, inflammation, angiogenesis, and fibrosis (811).Fibrotic disorders are typified by excessive connective tissue and ECM deposition that precludes normal healing of different tissues. ECM accumulation can be explained in two ways: increasing expression and deposition of connective tissue proteins and/or decreasing degradation of ECM proteins (12). Transforming growth factor type β, a multifunctional cytokine, is strongly overexpressed, and it is associated to the pathogenesis of these diseases (13, 14). It stimulates the expression of connective tissue growth factor (CTGF/CCN2) (15), a cytokine that is responsible for transforming growth factor type β fibrotic activity (16, 17). The role of CTGF in fibrosis has gained attention in recent years (16, 1822). CTGF overexpression is known to occur in a variety of fibrotic skin disorders (23, 24), renal (25), hepatic (26), and pulmonary fibrosis (27) and in muscles from patients with Duchenne muscular dystrophy (28).On the other hand, several pathologies involving fibrosis show an increase in MMP expression, including gelatinase A. Augmented expression of MMP-2 was found in submucous (29), skin (30), liver (31), and lung fibrosis (32, 33) and dystrophic myotubes from fibrotic muscles of Duchenne muscular dystrophy (34). It has been shown that transforming growth factor type β induces an increase in the amount of MMP-2 in fibroblasts (35) and that CTGF induces MMP-2 expression in cultured renal interstitial fibroblasts (36). The putative role assigned to MMP-2 in fibrotic disorders is related to tissue regeneration because of the capacity of this enzyme to degrade basal lamina (3739). Because MMP-2 expression is up-regulated in these pathologies but still a high ECM deposition is observed, we propose that this accumulation could be explained by a diminution of the MMP-2 enzymatic activity.In this article, we demonstrate that CTGF increases fibronectin (FN) amount, MMP-2 expression, and gelatinase activity in 3T3 fibroblasts. More significantly, we show that MMP-2-deficient cells have an increased basal amount of FN and show a response to CTGF that is opposite to that of control cells. This paradoxical effect could be explained by the increase in the FN amount that blocks the integrins (at least integrins with αV subunit), which can act like CTGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号