首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes.  相似文献   

2.
The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit beta 2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.  相似文献   

3.
The 20 S proteasomes play a critical role in intracellular homeostasis and stress response. Their function is tuned by covalent modifications, such as phosphorylation. In this study, we performed a comprehensive characterization of the phosphoproteome for the 20 S proteasome complexes in both the murine heart and liver. A platform combining parallel approaches in differential sample fractionation (SDS-PAGE, IEF, and two-dimensional electrophoresis), enzymatic digestion (trypsin and chymotrypsin), phosphopeptide enrichment (TiO(2)), and peptide fragmentation (CID and electron transfer dissociation (ETD)) has proven to be essential for identifying low abundance phosphopeptides. As a result, a total of 52 phosphorylation identifications were made in mammalian tissues; 44 of them were novel. These identifications include single (serine, threonine, and tyrosine) and dual phosphorylation peptides. 34 phosphopeptides were identified by CID; 10 phosphopeptides, including a key modification on the catalytically essential beta5 subunit, were identified only by ETD; eight phosphopeptides were shared identifications by both CID and ETD. Besides the commonly shared phosphorylation sites, unique sites were detected in the murine heart and liver, documenting variances in phosphorylation between tissues within the proteasome populations. Furthermore the biological significance of these 20 S phosphoproteomes was evaluated. The role of cAMP-dependent protein kinase A (PKA) to modulate these phosphoproteomes was examined. Using a proteomics approach, many of the cardiac and hepatic 20 S subunits were found to be substrate targets of PKA. Incubation of the intact 20 S proteasome complexes with active PKA enhanced phosphorylation in both existing PKA phosphorylation sites as well as novel sites in these 20 S subunits. Furthermore treatment with active PKA significantly elevated all three peptidase activities (beta1 caspase-like, beta2 trypsin-like, and beta5 chymotrypsin-like), demonstrating a functional role of PKA in governing these 20 S phosphoproteomes.  相似文献   

4.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

5.
Mammalian 26S proteasomes remain intact during protein degradation   总被引:1,自引:0,他引:1  
It has been suggested that degradation of polyubiquitylated proteins is coupled to dissociation of 26S proteasomes. In contrast, using several independent types of experiments, we find that mammalian proteasomes can degrade polyubiquitylated proteins without disassembling. Thus, immobilized, (35)S-labeled 26S proteasomes degraded polyubiquitylated Sic1 and c-IAP1 without releasing any subunits. In addition, it is predicted that if 26S proteasomes dissociate into 20S proteasomes and regulatory complexes during a degradation cycle, the reassembly rate would be limiting at low proteasome concentrations. However, the rate with which each proteasome degraded polyubiquitylated Sic1 was independent of the proteasome concentration. Likewise, substrate-dependent dissociation of 26S proteasomes could not be detected by nondenaturing electrophoresis. Lastly, epoxomicin-inhibited 20S proteasomes can trap released regulatory complexes, forming inactive 26S proteasomes, but addition of epoxomicin-inhibited 20S proteasomes had no effect on the degradation of either polyubiquitylated Sic1 or UbcH10 by 26S proteasomes or of endogenous substrates in cell extracts.  相似文献   

6.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

7.
The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex   总被引:1,自引:0,他引:1  
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.  相似文献   

8.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

9.
Eukaryotic cells contain various types of proteasomes. Core 20 S proteasomes (abbreviated 20 S below) have two binding sites for the regulatory particles, PA700 and PA28. PA700-20 S-PA700 complexes are known as 26 S proteasomes and are ATP-dependent machines that degrade cell proteins. PA28 is found both in previously described complexes of the type PA28-20 S-PA28 and in complexes that also contain PA700, as PA700-20 S-PA28. We refer to the latter as "hybrid proteasomes." The relative amounts of the various types of proteasomes in HeLa extracts were determined by a combination of immunoprecipitation and immunoblotting. Hybrid proteasomes accounted for about a fourth of all proteasomes in the extracts. Association of PA28 and proteasomes proved to be ATP-dependent. Hybrid proteasomes catalyzed ATP-dependent degradation of ornithine decarboxylase (ODC) without ubiquitinylation, as do 26 S proteasomes. In contrast, the homo-PA28 complex (PA28-20 S-PA28) was incapable of degrading ODC. Intriguingly, a major immunomodulatory cytokine, interferon-gamma, appreciably enhanced the ODC degradation in HeLa and SW620 cells through induction of the hybrid proteasome, which may also be responsible for the immunological processing of intracellular antigens. Taken together, we report here for the first time the existence of two types of ATP-dependent proteases, the 26 S proteasome and the hybrid proteasome, which appear to share the ATP-dependent proteolytic pathway in mammalian cells.  相似文献   

10.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

11.
The molecular basis for coordinated regulation of protein synthesis and degradation is not understood. Here we report that the 20S proteasome endoproteolytically cleaves the translation initiation factors eIF4G, a subunit of eIF4F, and eIF3a, a subunit of eIF3. The cleavage of eIF4G or eIF3a differentially affects the assembly of ribosomal preinitiation complexes on different cellular and viral mRNAs in an in vitro system containing pure components. Inhibition of proteolytic activity of the 20S proteasome with specific inhibitors prevents cleavage of both factors in vitro and in vivo, restores assembly of ribosomal complexes in vitro, and differentially affects translation of different mRNAs in vivo. These studies demonstrate the importance of the endoproteolytic activity of proteasomes in regulation of cellular processes and suggest a link between protein synthesis and degradation.  相似文献   

12.
The 20S proteasome is the catalytic core of the 26S proteasome, a central enzyme in the ubiquitin-proteasome system. Its assembly proceeds in a multistep and orderly fashion. Ump1 is the only well-described chaperone dedicated to the assembly of the 20S proteasome in yeast. Here, we report a phenotype related to the DNA damage response that allowed us to isolate four other chaperones of yeast 20S proteasomes, which we named Poc1-Poc4. Poc1/2 and Poc3/4 form two pairs working at different stages in early 20S proteasome assembly. We identify PAC1, PAC2, the recently described PAC3, and an uncharacterized protein that we named PAC4 as functional mammalian homologs of yeast Poc factors. Hence, in yeast as in mammals, proteasome assembly is orchestrated by two pairs of chaperones acting upstream of the half-proteasome maturase Ump1. Our findings provide evidence for a remarkable conservation of a pairwise chaperone-assisted proteasome assembly throughout evolution.  相似文献   

13.
Mammalian proteasomes are macromolecular complexes formed of a catalytic 20S core associated to two regulatory complexes. The 20S core complex consists of four stacked rings of seven alpha or beta subunits. Three beta subunits contain a catalytic site and can be replaced by three interferon gamma-inducible counterparts to form the immunoproteasome. Cells may constitutively possess a mixture of both 20S proteasome types leading to a heterogeneous proteasome population. Purified rat 20S proteasome has been separated in several chromatographic fractions indicating an even higher degree of complexity in 20S proteasome subunit composition. This complexity may arise from the presence of subunit isoforms, as previously detected in purified human erythrocyte 20S proteasome. In this study, we have used a quantitative proteomic approach based on two-dimensional gel electrophoresis and isotope-coded affinity tag (ICAT) labeling to quantify the variations in subunit composition, including subunit isoforms, of 20S proteasomes purified from different cells. The protocol has been adapted to the analysis of low quantities of 20S proteasome complexes. The strategy has then been validated using standard proteins and has been applied to the comparison of 20S proteasomes from erythrocytes and U937 cancer cells. The results obtained show that this approach represents a valuable tool for the study of 20S proteasome heterogeneity.  相似文献   

14.
15.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

16.
Proteasome activity is fine-tuned by associating the proteolytic core particle (CP) with stimulatory and inhibitory complexes. Although several mammalian regulatory complexes are known, knowledge of yeast proteasome regulators is limited to the 19-subunit regulatory particle (RP), which confers ubiquitin-dependence on proteasomes. Here we describe an alternative proteasome activator from Saccharomyces cerevisiae, Blm10. Synthetic interactions between blm10Delta and other mutations that impair proteasome function show that Blm10 functions together with proteasomes in vivo. This large, internally repetitive protein is found predominantly within hybrid Blm10-CP-RP complexes, representing a distinct pool of mature proteasomes. EM studies show that Blm10 has a highly elongated, curved structure. The near-circular profile of Blm10 adapts it to the end of the CP cylinder, where it is properly positioned to activate the CP by opening the axial channel into its proteolytic chamber.  相似文献   

17.
Biogenesis, structure and function of the yeast 20S proteasome.   总被引:12,自引:3,他引:9       下载免费PDF全文
P Chen  M Hochstrasser 《The EMBO journal》1995,14(11):2620-2630
Intracellular degradation of many eukaryotic proteins requires their covalent ligation to ubiquitin. We previously identified a ubiquitin-dependent degradation pathway in the yeast Saccharomyces cerevisiae, the DOA pathway. Independent work has suggested that a major mechanism of cellular proteolysis involves a large multisubunit protease(s) called the 20S proteasome. We demonstrate here that Doa3 and Doa5, two essential components of the DOA pathway, are subunits of the proteasome. Biochemical analyses of purified mutant proteasomes suggest functions for several conserved proteasome subunit residues. All detectable proteasome particles purified from doa3 or doa5 cells have altered physical properties; however, the mutant particles contain the same 14 different subunits as the wild-type enzyme, indicating that most or all yeast 20S proteasomes comprise a uniform population of hetero-oligomeric complexes rather than a mixture of particles of variable subunit composition. Unexpectedly, we found that the yeast Doa3 and Pre3 subunits are synthesized as precursors which are processed in a manner apparently identical to that of related mammalian proteasome subunits implicated in antigen presentation, suggesting that biogenesis of the proteasome particle is highly conserved between yeast and mammals.  相似文献   

18.
Pools of 26S and 20S proteasomes were studied in the spleen, liver, lung, and ascitic carcinoma Krebs-II of mouse. Western blotting demonstrated that the pool of 26S proteasomes in ascitic carcinoma Krebs-II was twice that in control lung cells and did not significantly differ by total 26S proteasome quantities from the spleen and liver. At the same time, the level of immune subunit LMP7 was 12 times lower in it compared to lung proteasomes and 4–5 times lower compared to spleen and liver proteasomes. Immune subunit LMP2 was undetectable by this technique in the ascitic carcinoma in contrast to the lung, spleen, and liver. All immune subunits in the studied organs and ascitic carcinoma Krebs-II are components of 26S but not 20S proteasomes.  相似文献   

19.
Molecular biology of proteasomes   总被引:7,自引:0,他引:7  
Eukaryotic proteasomes are unusually large proteins with a heterogeneous subunit composition and have been classified into two isoforms with apparently distinct sedimentation coefficients of 20S and 26S. The 20S proteasome is composed of a set of small subunits with molecular masses of 21–32 kDa. The 26S proteasome is a multi-molecular assembly, consisting of a central 20S proteasome and two terminal subsets of multiple subunits of 28–112 kDa attached to the central part in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been deduced from the nucleotide sequences of cDNAs or genes isolated by recombinant DNA techniques. These genes constitute a unique multi-gene family encoding homologous polypeptides that have been conserved during evolution. In contrast, little is yet known about the terminal structures of the 26S proteasome, but the cDNA clonings of those of humans are currently in progress. In this review, I summarize available information of the structural features on eukaryotic 20S and 26S proteasomes which has been clarified by molecular-biological methods.  相似文献   

20.
Selective degradation of single subunits of multimeric complexes by the ubiquitin pathway underlies multiple regulatory switches, including those involving cyclins and Cdk inhibitors. The machinery that segregates ubiquitinated proteins from unmodified partners prior to degradation remains undefined. We report that ubiquitinated Sic1 (Ub-Sic1) embedded within inactive S phase cyclin-Cdk (S-Cdk) complexes was rapidly degraded by purified 26S proteasomes, yielding active S-Cdk. Mutant proteasomes that failed to degrade Ub-Sic1 activated S-Cdk only partially in an ATP-dependent manner. Whereas Ub-Sic1 was degraded within approximately 2 min, spontaneous dissociation of Ub-Sic1 from S-Cdk was approximately 200-fold slower. We propose that the 26S proteasome has the intrinsic capability to extract, unfold, and degrade ubiquitinated proteins while releasing bound partners untouched. Activation of S-Cdk reported herein represents a complete reconstitution of the regulatory switch underlying the G1/S transition in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号