首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.Homologous recombination (HR)2 is one of the primary mechanisms by which cells repair dsDNA breaks (DSBs) and ssDNA gaps (SSGs), and is important for restart of stalled DNA replication (1). HR is initiated when RecA-like recombinases bind to ssDNA forming an extended nucleoprotein filament, referred to as a presynaptic complex (2). The potential for genetic rearrangements dictates that HR initiation is tightly regulated at multiple levels (1). During replication, the ssDNA-binding protein (SSB) protects transiently unwound DNA chains, preventing interactions with recombinases. Following DNA damage, recombination mediator proteins (RMPs) initiate HR by facilitating the formation of the recombinase filaments with ssDNA, while removing SSB (3, 4). Mutations in human proteins involved in HR initiation are linked to cancer predisposition, chromosome instability, UV sensitivity, and premature aging diseases (48). To date, little is known about the mechanism by which RMPs regulate the formation of the recombinase filaments on the SSB-protected ssDNA.In Escherichia coli, there are two major recombination pathways, RecBCD and RecF (9, 10). A helicase/nuclease RecBCD complex processes DSBs and recruits RecA on ssDNA in a sequence-specific manner (1113). The principle players in the RecF pathway are the RecF, RecO, and RecR proteins, which form an epistatic group that is important for SSG repair, for restart of stalled DNA replication, and under specific conditions, can also process DSBs (1420). Homologs of RecF, -O, and -R are present in the majority of known bacteria (21), including Deinococcus radiodurans, extremely radiation-resistant bacteria that lacks the RecBCD pathway, yet is capable of repairing thousands of DSBs (22, 23). In addition, the sequence or functional homologs of RecF pathway proteins are involved in similar pathways in eukaryotes that include among others WRN, BLM, RAD52, and BRCA2 proteins (48).The involvement of all three RecF, -O, and -R proteins in HR initiation is well documented by genetic and cellular approaches (18, 2430), yet their biochemical functions in the initiation process remain unclear, particularly with respect to RecF. RecO and RecR proteins are sufficient to promote formation of the RecA filament on SSB-bound ssDNA in vitro (27). The UV-sensitive phenotype of recF mutants can be suppressed by RecOR overexpression, suggesting that RecF may direct the RMP complex to DNA-damaged regions where HR initiation is required (31). In agreement with this hypothesis, RecF dramatically increases the efficiency of the RecA loading at ds/ssDNA junctions with a 3′ ssDNA extension under specific conditions (32). RecF and RecR proteins also prevent the RecA filaments from extending into dsDNA regions adjacent to SSGs (33). These data suggest that RecF may directly recognize an ss/dsDNA junction structure (34). However, DNA binding experiments have not provided clear evidence to support such a hypothesis (11).The targeting promoted by RecF may also occur through more complex processes. RecF shares a high structural similarity with the head domain of Rad50, an ABC-type ATPase that recognizes DSBs and initiates repair in archaea and eukaryotes (35). All known ABC-type ATPases function as oligomeric complexes in which a sequence of inter- and intra-molecular interactions is triggered by the ATP-dependent dimerization and the dimer-dependent ATP hydrolysis (3639). RecF is also an ATP-dependent DNA-binding protein and a weak DNA-dependent ATPase (11, 40). RecF forms an ATP-dependent dimer and all three conserved motifs (Walker A, Walker B, and “signature”) of RecF are important for ATP-dependent dimerization, ATP hydrolysis, and functional resistance to DNA damage (35). Thus, RecF may function in recombination initiation through a complex pathway of protein-protein and DNA-protein interactions regulated by ATP-dependent RecF dimerization.In this report, we present a detailed characterization of the RecF dimerization, and its role in the RecF interaction with various DNA substrates, with RecR, and in ATP hydrolysis. Our data outline the following key findings. First, RecF interacts with DNA as a dimer. Second, neither RecF alone nor the RecFR complex preferentially binds the ss/dsDNA junction. Finally, RecR changes the ATPase activity and the DNA binding of RecF by destabilizing the interaction with ssDNA, and greatly enhancing the interaction with dsDNA. Our results suggest that the specificity of RecF for the boundaries of SSGs is likely to result from a sequence of protein-protein interaction events rather than a simple RecF ss/dsDNA binding, underlining a highly regulated mechanism of the HR initiation by the RecFOR proteins.  相似文献   

3.
Members of the CLC gene family either function as chloride channels or as anion/proton exchangers. The plant AtClC-a uses the pH gradient across the vacuolar membrane to accumulate the nutrient in this organelle. When AtClC-a was expressed in Xenopus oocytes, it mediated exchange and less efficiently mediated Cl/H+ exchange. Mutating the “gating glutamate” Glu-203 to alanine resulted in an uncoupled anion conductance that was larger for Cl than . Replacing the “proton glutamate” Glu-270 by alanine abolished currents. These could be restored by the uncoupling E203A mutation. Whereas mammalian endosomal ClC-4 and ClC-5 mediate stoichiometrically coupled 2Cl/H+ exchange, their transport is largely uncoupled from protons. By contrast, the AtClC-a-mediated accumulation in plant vacuoles requires tight coupling. Comparison of AtClC-a and ClC-5 sequences identified a proline in AtClC-a that is replaced by serine in all mammalian CLC isoforms. When this proline was mutated to serine (P160S), Cl/H+ exchange of AtClC-a proceeded as efficiently as exchange, suggesting a role of this residue in exchange. Indeed, when the corresponding serine of ClC-5 was replaced by proline, this Cl/H+ exchanger gained efficient coupling. When inserted into the model Torpedo chloride channel ClC-0, the equivalent mutation increased nitrate relative to chloride conductance. Hence, proline in the CLC pore signature sequence is important for exchange and conductance both in plants and mammals. Gating and proton glutamates play similar roles in bacterial, plant, and mammalian CLC anion/proton exchangers.CLC proteins are found in all phyla from bacteria to humans and either mediate electrogenic anion/proton exchange or function as chloride channels (1). In mammals, the roles of plasma membrane CLC Cl channels include transepithelial transport (25) and control of muscle excitability (6), whereas vesicular CLC exchangers may facilitate endocytosis (7) and lysosomal function (810) by electrically shunting vesicular proton pump currents (11). In the plant Arabidopsis thaliana, there are seven CLC isoforms (AtClC-a–AtClC-g)2 (1215), which may mostly reside in intracellular membranes. AtClC-a uses the pH gradient across the vacuolar membrane to transport the nutrient nitrate into that organelle (16). This secondary active transport requires a tightly coupled exchange. Astonishingly, however, mammalian ClC-4 and -5 and bacterial EcClC-1 (one of the two CLC isoforms in Escherichia coli) display tightly coupled Cl/H+ exchange, but anion flux is largely uncoupled from H+ when is transported (1721). The lack of appropriate expression systems for plant CLC transporters (12) has so far impeded structure-function analysis that may shed light on the ability of AtClC-a to perform efficient exchange. This dearth of data contrasts with the extensive mutagenesis work performed with CLC proteins from animals and bacteria.The crystal structure of bacterial CLC homologues (22, 23) and the investigation of mutants (17, 1921, 2429) have yielded important insights into their structure and function. CLC proteins form dimers with two largely independent permeation pathways (22, 25, 30, 31). Each of the monomers displays two anion binding sites (22). A third binding site is observed when a certain key glutamate residue, which is located halfway in the permeation pathway of almost all CLC proteins, is mutated to alanine (23). Mutating this gating glutamate in CLC Cl channels strongly affects or even completely suppresses single pore gating (23), whereas CLC exchangers are transformed by such mutations into pure anion conductances that are not coupled to proton transport (17, 19, 20). Another key glutamate, located at the cytoplasmic surface of the CLC monomer, seems to be a hallmark of CLC anion/proton exchangers. Mutating this proton glutamate to nontitratable amino acids uncouples anion transport from protons in the bacterial EcClC-1 protein (27) but seems to abolish transport altogether in mammalian ClC-4 and -5 (21). In those latter proteins, anion transport could be restored by additionally introducing an uncoupling mutation at the gating glutamate (21).The functional complementation by AtClC-c and -d (12, 32) of growth phenotypes of a yeast strain deleted for the single yeast CLC Gef1 (33) suggested that these plant CLC proteins function in anion transport but could not reveal details of their biophysical properties. We report here the first functional expression of a plant CLC in animal cells. Expression of wild-type (WT) and mutant AtClC-a in Xenopus oocytes indicate a general role of gating and proton glutamate residues in anion/proton coupling across different isoforms and species. We identified a proline in the CLC signature sequence of AtClC-a that plays a crucial role in exchange. Mutating it to serine, the residue present in mammalian CLC proteins at this position, rendered AtClC-a Cl/H+ exchange as efficient as exchange. Conversely, changing the corresponding serine of ClC-5 to proline converted it into an efficient exchanger. When proline replaced the critical serine in Torpedo ClC-0, the relative conductance of this model Cl channel was drastically increased, and “fast” protopore gating was slowed.  相似文献   

4.
5.
6.
7.
8.
9.
The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited. Here, we show that α-actinin, which links membrane proteins to the actin cytoskeleton, associates with ASIC1a in brain and in cultured cells. The interaction depended on an α-actinin-binding site in the ASIC1a C terminus that was specific for ASIC1a versus other ASICs and for α-actinin-1 and -4. Co-expressing α-actinin-4 altered ASIC1a current density, pH sensitivity, desensitization rate, and recovery from desensitization. Moreover, reducing α-actinin expression altered acid-activated currents in hippocampal neurons. These findings suggest that α-actinins may link ASIC1a to a macromolecular complex in the postsynaptic membrane where it regulates ASIC1a activity.Acid-sensing ion channels (ASICs)2 are H+-gated members of the DEG/ENaC family (13). Members of this family contain cytosolic N and C termini, two transmembrane domains, and a large cysteine-rich extracellular domain. ASIC subunits combine as homo- or heterotrimers to form cation channels that are widely expressed in the central and peripheral nervous systems (14). In mammals, four genes encode ASICs, and two subunits, ASIC1 and ASIC2, have two splice forms, a and b. Central nervous system neurons express ASIC1a, ASIC2a, and ASIC2b (57). Homomeric ASIC1a channels are activated when extracellular pH drops below 7.2, and half-maximal activation occurs at pH 6.5–6.8 (810). These channels desensitize in the continued presence of a low extracellular pH, and they can conduct Ca2+ (9, 1113). ASIC1a is required for acid-evoked currents in central nervous system neurons; disrupting the gene encoding ASIC1a eliminates H+-gated currents unless extracellular pH is reduced below pH 5.0 (5, 7).Previous studies found ASIC1a enriched in synaptosomal membrane fractions and present in dendritic spines, the site of excitatory synapses (5, 14, 15). Consistent with this localization, ASIC1a null mice manifested deficits in hippocampal long term potentiation, learning, and memory, which suggested that ASIC1a is required for normal synaptic plasticity (5, 16). ASICs might be activated during neurotransmission when synaptic vesicles empty their acidic contents into the synaptic cleft or when neuronal activity lowers extracellular pH (1719). Ion channels, including those at the synapse often interact with multiple proteins in a macromolecular complex that incorporates regulators of their function (20, 21). For ASIC1a, only a few interacting proteins have been identified. Earlier work indicated that ASIC1a interacts with another postsynaptic scaffolding protein, PICK1 (15, 22, 23). ASIC1a also has been reported to interact with annexin II light chain p11 through its cytosolic N terminus to increase cell surface expression (24) and with Ca2+/calmodulin-dependent protein kinase II to phosphorylate the channel (25). However, whether ASIC1a interacts with additional proteins and with the cytoskeleton remain unknown. Moreover, it is not known whether such interactions alter ASIC1a function.In analyzing the ASIC1a amino acid sequence, we identified cytosolic residues that might bind α-actinins. α-Actinins cluster membrane proteins and signaling molecules into macromolecular complexes and link membrane proteins to the actincytoskeleton (for review, Ref. 26). Four genes encode α-actinin-1, -2, -3, and -4 isoforms. α-Actinins contain an N-terminal head domain that binds F-actin, a C-terminal region containing two EF-hand motifs, and a central rod domain containing four spectrin-like motifs (2628). The C-terminal portion of the rod segment appears to be crucial for binding to membrane proteins. The α-actinins assemble into antiparallel homodimers through interactions in their rod domain. α-Actinins-1, -2, and -4 are enriched in dendritic spines, concentrating at the postsynaptic membrane (2935). In the postsynaptic membrane of excitatory synapses, α-actinin connects the NMDA receptor to the actin cytoskeleton, and this interaction is key for Ca2+-dependent inhibition of NMDA receptors (3638). α-Actinins can also regulate the membrane trafficking and function of several cation channels, including L-type Ca2+ channels, K+ channels, and TRP channels (3941).To better understand the function of ASIC1a channels in macromolecular complexes, we asked if ASIC1a associates with α-actinins. We were interested in the α-actinins because they and ASIC1a, both, are present in dendritic spines, ASIC1a contains a potential α-actinin binding sequence, and the related epithelial Na+ channel (ENaC) interacts with the cytoskeleton (42, 43). Therefore, we hypothesized that α-actinin interacts structurally and functionally with ASIC1a.  相似文献   

10.
Protein kinase D (PKD) is a serine/threonine protein kinase rapidly activated by G protein-coupled receptor (GPCR) agonists via a protein kinase C (PKC)-dependent pathway. Recently, PKD has been implicated in the regulation of long term cellular activities, but little is known about the mechanism(s) of sustained PKD activation. Here, we show that cell treatment with the preferential PKC inhibitors GF 109203X or Gö 6983 blocked rapid (1–5-min) PKD activation induced by bombesin stimulation, but this inhibition was greatly diminished at later times of bombesin stimulation (e.g. 45 min). These results imply that GPCR-induced PKD activation is mediated by early PKC-dependent and late PKC-independent mechanisms. Western blot analysis with site-specific antibodies that detect the phosphorylated state of the activation loop residues Ser744 and Ser748 revealed striking PKC-independent phosphorylation of Ser748 as well as Ser744 phosphorylation that remained predominantly but not completely PKC-dependent at later times of bombesin or vasopressin stimulation (20–90 min). To determine the mechanisms involved, we examined activation loop phosphorylation in a set of PKD mutants, including kinase-deficient, constitutively activated, and PKD forms in which the activation loop residues were substituted for alanine. Our results show that PKC-dependent phosphorylation of the activation loop Ser744 and Ser748 is the primary mechanism involved in early phase PKD activation, whereas PKD autophosphorylation on Ser748 is a major mechanism contributing to the late phase of PKD activation occurring in cells stimulated by GPCR agonists. The present studies identify a novel mechanism induced by GPCR activation that leads to late, PKC-independent PKD activation.A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades has emerged as a fundamental signal transduction mechanism triggered by multiple extracellular stimuli, including hormones, neurotransmitters, chemokines, and growth factors (1). Many of these agonists bind to G protein-coupled receptors (GPCRs),4 activate heterotrimeric G proteins and stimulate isoforms of the phospholipase C family, including β, γ, δ, and ε (reviewed in Refs. 1 and 2). Activated phospholipase Cs catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate to produce the second messengers inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Inositol 1,4,5-trisphosphate mobilizes Ca2+ from intracellular stores (3, 4) whereas DAG directly activates the classic (α, β, and γ) and novel (δ, ε, η, and θ) isoforms of PKC (57). Although it is increasingly recognized that each PKC isozyme has specific functions in vivo (58), the mechanisms by which PKC-mediated signals are propagated to critical downstream targets remain incompletely defined.PKD, also known initially as PKCμ (9, 10), and two recently identified serine protein kinases termed PKD2 (11) and PKCν/PKD3 (12, 13), which are similar in overall structure and primary amino acid sequence to PKD (14), constitute a new protein kinase family within the Ca2+/calmodulin-dependent protein kinase group (15) and separate from the previously identified PKCs (14). Salient features of PKD structure include an N-terminal regulatory region containing a tandem repeat of cysteine-rich zinc finger-like motifs (termed the cysteine-rich domain) that confers high affinity binding to phorbol esters and DAG (9, 16, 17), followed by a pleckstrin homology (PH) domain that negatively regulates catalytic activity (18, 19). The C-terminal region of the PKDs contains its catalytic domain, which is distantly related to Ca2+-regulated kinases.In unstimulated cells, PKD is in a state of low kinase catalytic activity maintained by the N-terminal domain, which represses the catalytic activity of the enzyme by autoinhibition. Consistent with this model, deletions or single amino acid substitutions in the PH domain result in constitutive kinase activity (1820). Physiological activation of PKD within cells occurs via a phosphorylation-dependent mechanism first identified in our laboratory (21). In response to cellular stimuli, PKD is converted from a low activity form into a persistently active form that is retained during isolation from cells, as shown by in vitro kinase assays performed in the absence of lipid co-activators (21, 22). PKD activation has been demonstrated in response to engagement of specific GPCRs either by regulatory peptides (2330) or lysophosphatidic acid (27, 31, 32); signaling through Gq, G12, Gi, and Rho (27, 3134); activation of receptor tyrosine kinases, such as the platelet-derived growth factor receptor (23, 35, 36); cross-linking of B-cell receptor and T-cell receptor in B and T lymphocytes, respectively (3740); and oxidative stress (4144).Throughout these studies, multiple lines of evidence indicated that PKC activity is necessary for rapid PKD activation within intact cells. For example, rapid PKD activation was selectively and potently blocked by cell treatment with preferential PKC inhibitors (e.g. GF 109203X or Gö 6983) that do not directly inhibit PKD catalytic activity (21, 22), implying that PKD activation in intact cells is mediated, directly or indirectly, through PKCs. In line with this conclusion, cotransfection of PKD with active mutant forms of “novel” PKCs (PKCs δ, ε, η, and θ) resulted in robust PKD activation in the absence of cell stimulation (21, 4446). Many reports demonstrated the operation of a rapid PKC/PKD signaling cascade in response to multiple GPCR agonists in a broad range of cell types, including normal and cancer cells (reviewed in Ref. 14). Our previous studies identified Ser744 and Ser748 in the PKD activation loop (also referred as the activation segment or T-loop) as phosphorylation sites critical for PKC-mediated PKD activation (reviewed in Ref. 14). Collectively, these findings demonstrated the existence of rapidly activated PKC-PKD protein kinase cascade(s) and raised the possibility that some PKC-dependent biological responses involve PKD acting as a downstream effector.PKD has been reported recently to mediate several important cellular activities and processes, including signal transduction (30, 4749), chromatin modification (50), Golgi organization and function (51, 52), c-Jun function (47, 53, 54), NFκB-mediated gene expression (43, 55, 56), and cell survival, migration, and differentiation and DNA synthesis and proliferation (reviewed in Ref. 14). Thus, mounting evidence indicates that PKD has a remarkable diversity of both its signal generation and distribution and its potential for complex regulatory interactions with multiple downstream pathways, leading to multiple responses, including long term cellular events. Despite increasing recognition of its importance, very little is known about the mechanism(s) of sustained PKD activation as opposed to the well documented rapid, PKC-dependent PKD activation.The results presented here demonstrate that prolonged GPCR-induced PKD activation is mediated by sequential PKC-dependent and PKC-independent phases of regulation. We report here, for the first time, that PKD autophosphorylation on Ser748 is a major mechanism contributing to the late phase of PKD activation occurring in cells stimulated by GPCR agonists. The present studies expand previous models of PKD regulation by identifying a novel mechanism induced by GPCR activation that leads to late, PKC-independent PKD activation.  相似文献   

11.
Base excision repair, a major repair pathway in mammalian cells, is responsible for correcting DNA base damage and maintaining genomic integrity. Recent reports show that the Rad9-Rad1-Hus1 complex (9-1-1) stimulates enzymes proposed to perform a long patch-base excision repair sub-pathway (LP-BER), including DNA glycosylases, apurinic/apyrimidinic endonuclease 1 (APE1), DNA polymerase β (pol β), flap endonuclease 1 (FEN1), and DNA ligase I (LigI). However, 9-1-1 was found to produce minimal stimulation of FEN1 and LigI in the context of a complete reconstitution of LP-BER. We show here that pol β is a robust stimulator of FEN1 and a moderate stimulator of LigI. Apparently, there is a maximum possible stimulation of these two proteins such that after responding to pol β or another protein in the repair complex, only a small additional response to 9-1-1 is allowed. The 9-1-1 sliding clamp structure must serve primarily to coordinate enzyme actions rather than enhancing rate. Significantly, stimulation by the polymerase involves interaction of primer terminus-bound pol β with FEN1 and LigI. This observation provides compelling evidence that the proposed LP-BER pathway is actually employed in cells. Moreover, this pathway has been proposed to function by sequential enzyme actions in a “hit and run” mechanism. Our results imply that this mechanism is still carried out, but in the context of a multienzyme complex that remains structurally intact during the repair process.The mammalian genome experiences constant stress from both external and internal factors that causes genomic instability. Eukaryotic cells have developed a number of DNA repair pathways that correct DNA damage before it results in permanent chromosomal alteration. Base excision repair (BER)3 is the major pathway responsible for reversing DNA damage sustained by individual nucleotide bases. Mammalian BER is initiated by DNA glycosylases, which recognize structural alteration of a nitrogenous base and excise it leaving an intact sugar-phosphate backbone with an apurinic/apyrimidinic (AP) site (1). AP sites in humans are detected by AP endonuclease 1 (APE1) that cleaves the phosphate backbone of the damaged strand, leaving a nick with a 3′-OH group and a 5′-deoxyribose phosphate (dRP) residue. The dRP-bordered nick is not a substrate for ligation. If the dRP residue is not oxidized or reduced, repair can proceed via a short patch-BER pathway, in which the dRP residue is removed by the 5′-lyase activity of DNA polymerase β (pol β), which concurrently fills in the 1-nt gap, and the resulting nick is sealed by the DNA ligase III-XRCC1 complex (2-4).However, if the oxidative state of the dRP is altered, the lyase activity of pol β is inhibited, but the polymerase activity of pol β can still displace the oxidized or reduced dRP residue into a 2-10-nt 5′ flap intermediate, which will then be cleaved by FEN1 and subsequently joined by LigI (4-7). This process is known as long patch-base excision repair (LP-BER). Recent studies examining the relevance of the two different pathways in vitro predict a predominant role for short patch-BER in the cell as compared with LP-BER (8). Because the cell undergoes constant repair of damaged bases, it is very difficult to assess the relative use of one pathway over the other in vivo. Studies using plasmid DNA containing defined DNA damage have been used as an indirect approach to evaluate the role of the two different BER pathways in cells and the size of the DNA repair patches (9). Results from these studies have shown that repair patches of 6-12 nucleotides are generated during repair of plasmids that contain a single base lesion, at least supporting the existence of LP-BER in vivo.LP-BER has also been proposed to proceed by either a PCNA-dependent sub-pathway involving the use of DNA pol δ/ε or a PCNA-independent sub-pathway that uses only DNA pol β. However, most LP-BER reconstitution experiments in vitro indicate that pol β works more efficiently than pol δ with the other proposed LP-BER proteins. FEN1 is known to stimulate pol β-mediated DNA synthesis on an LP-BER substrate suggesting that these two proteins interact functionally and mechanistically (10). pol β has also been shown to interact with LigI by co-immunoprecipitation experiments indicating that they might be a part of a multiprotein DNA repair complex (11).The heterotrimeric protein complex, Rad9, Rad1, and Hus1 (the 9-1-1 complex), plays a significant role in the early recognition of DNA damage and recruiting appropriate proteins to repair sites. The 9-1-1 complex interacts with several of the proteins involved in the proposed BER pathways, including DNA glycosylases (12-14), APE1 (15), pol β (16), FEN1 (17,18), and LigI (19, 20). In a recent report (15), the 9-1-1 complex was shown to interact both physically and functionally with APE1 and pol β and to stimulate their respective activities. Stimulation of the endonuclease ensures the abasic site is recognized and cleaved off efficiently. Stimulation of nucleotide addition by pol β is expected to promote the LP-BER sub-pathway, as 9-1-1 stimulates the strand displacement activity of pol β, thereby requiring FEN1 flap cleavage before ligation to repair the site of damage. Because 9-1-1 is structurally similar to the sliding clamp PCNA, early studies were focused on determining the effects of 9-1-1 on DNA replication and repair proteins previously shown to be stimulated by PCNA. The 9-1-1 complex has been reported to stimulate both FEN1 cleavage (17, 18) and nick sealing by LigI (20) in vitro. However, the 9-1-1 clamp poorly stimulated FEN1 and LigI in the entire LP-BER-reconstituted system as compared with strong stimulation by 9-1-1 of individual cognate substrates (15). The authors (15) suggest that FEN1 and LigI evolved to respond to stimulation by PCNA and not 9-1-1 during LP-BER. The issue with this explanation is that it does not take into consideration how LP-BER would be efficiently carried out when damage-induced p21 binds and inhibits PCNA (21).To define how 9-1-1 interacts with the components of BER, we have reconstituted the entire LP-BER pathway using purified human enzymes and substrates that simulate an abasic site created after recognition and cleavage of damaged base by a glycosylase. Similar to results of Gembka et al. (15), we observe much less stimulation of either FEN1 or LigI by 9-1-1 in the fully reconstituted system compared with 9-1-1 stimulation of FEN1 on a flap substrate or LigI on a nicked substrate alone. Our subsequent analysis of the protein-protein interactions among the various LP-BER enzymes provides insight into why the 9-1-1 clamp exhibits minimal stimulation in the reconstituted system. Moreover, our mechanistic characterization of the significant role of pol β in mediating the activities of various enzymes in the multiprotein repair complex both explains the behavior of 9-1-1 and strongly suggests the existence of the LP-BER pathway in vivo.  相似文献   

12.
13.
14.
15.
A key set of reactions for the initiation of new DNA strands during herpes simplex virus-1 replication consists of the primase-catalyzed synthesis of short RNA primers followed by polymerase-catalyzed DNA synthesis (i.e. primase-coupled polymerase activity). Herpes primase (UL5-UL52-UL8) synthesizes products from 2 to ∼13 nucleotides long. However, the herpes polymerase (UL30 or UL30-UL42) only elongates those at least 8 nucleotides long. Surprisingly, coupled activity was remarkably inefficient, even considering only those primers at least 8 nucleotides long, and herpes polymerase typically elongated <2% of the primase-synthesized primers. Of those primers elongated, only 4–26% of the primers were passed directly from the primase to the polymerase (UL30-UL42) without dissociating into solution. Comparing RNA primer-templates and DNA primer-templates of identical sequence showed that herpes polymerase greatly preferred to elongate the DNA primer by 650–26,000-fold, thus accounting for the extremely low efficiency with which herpes polymerase elongated primase-synthesized primers. Curiously, one of the DNA polymerases of the host cell, polymerase α (p70-p180 or p49-p58-p70-p180 complex), extended herpes primase-synthesized RNA primers much more efficiently than the viral polymerase, raising the possibility that the viral polymerase may not be the only one involved in herpes DNA replication.Herpes simplex virus 1 (HSV-1)2 encodes seven proteins essential for replicating its double-stranded DNA genome; five of these encode the heterotrimeric helicase-primase (UL5-UL52-UL8 gene products) and the heterodimeric polymerase (UL30-UL42 gene products) (1, 2). The helicase-primase unwinds the DNA at the replication fork and generates single-stranded DNA for both leading and lagging strand synthesis. Primase synthesizes short RNA primers on the lagging strand that the polymerase presumably elongates using dNTPs (i.e. primase-coupled polymerase activity). These two protein complexes are thought to replicate the viral genome on both the leading and lagging strands (1, 2).Previous studies have focused on the helicase-primase and polymerase separately. The helicase-primase contains three subunits, UL5, UL52, and UL8 in a 1:1:1 ratio (35). The UL5 subunit has helicase-like motifs and the UL52 subunit has primase-like motifs, yet the minimal active complex that demonstrates either helicase or primase activities contains both UL5 and UL52 (6, 7). Although the UL8 subunit has no known catalytic activity, several functions have been proposed, including enhancing helicase and primase activities, enhancing primer synthesis on ICP8 (the HSV-1 single-stranded binding protein)-coated DNA strands, and facilitating formation of the replisome (812). Although primase will synthesize short (23 nucleotides long) primers on a variety of template sequences, synthesis of longer primers up to 13 nucleotides long requires the template sequence, 3′-deoxyguanidine-pyrimidine-pyrimidine-5′ (13). Primase initiates synthesis at the first pyrimidine via the polymerization of two purine NTPs (13). Even after initiation at this sequence, however, the vast majority of products are only 2–3 nucleotides long (13, 14).The herpes polymerase consists of the UL30 subunit, which has polymerase and 3′ → 5′ exonuclease activities (1, 2), and the UL42 subunit, which serves as a processivity factor (1517). Unlike most processivity factors that encircle the DNA, the UL42 protein binds double-stranded DNA and thus directly tethers the polymerase to the DNA (18). Using pre-existing DNA primer-templates as the substrate, the heterodimeric polymerase (UL30-UL42) incorporates dNTPs at a rate of 150 s–1, a rate much faster than primer synthesis (for primers >7 nucleotides long, 0.0002–0.01 s–1) (19, 20).We examined primase-coupled polymerase activity by the herpes primase and polymerase complexes. Although herpes primase synthesizes RNA primers 2–13 nucleotides long, the polymerase only effectively elongates those at least 8 nucleotides long. Surprisingly, the polymerase elongated only a small fraction of the primase-synthesized primers (<1–2%), likely because of the polymerase elongating RNA primer-templates much less efficiently than DNA primer-templates. In contrast, human DNA polymerase α (pol α) elongated the herpes primase-synthesized primers very efficiently. The biological significance of these data is discussed.  相似文献   

16.
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.Chromosomal DNA double strand breaks (DSBs)2 are potential inducers of chromosomal aberrations and tumorigenesis, and they are accurately repaired by the homologous recombinational repair (HRR) pathway, without base substitutions, deletions, and insertions (13). In the HRR pathway (4, 5), single-stranded DNA (ssDNA) tails are produced at the DSB sites. The RAD51 protein, a eukaryotic homologue of the bacterial RecA protein, binds to the ssDNA tail and forms a helical nucleoprotein filament. The RAD51-ssDNA filament then binds to the intact double-stranded DNA (dsDNA) to form a three-component complex, containing ssDNA, dsDNA, and the RAD51 protein. In this three-component complex, the RAD51 protein promotes recombination reactions, such as homologous pairing and strand exchange (69).The RAD51 protein requires auxiliary proteins to promote the homologous pairing and strand exchange reactions efficiently in cells (1012). In humans, the RAD52, RAD54, and RAD54B proteins directly interact with the RAD51 protein (1317) and stimulate the RAD51-mediated homologous pairing and/or strand exchange reactions in vitro (1821). The human RAD51AP1 protein, which directly binds to the RAD51 protein (22), was also found to stimulate RAD51-mediated homologous pairing in vitro (23, 24). The BRCA2 protein contains ssDNA-binding, dsDNA-binding, and RAD51-binding motifs (2533), and the Ustilago maydis BRCA2 ortholog, Brh2, reportedly stimulated RAD51-mediated strand exchange (34, 35). Most of these RAD51-interacting factors are known to be required for efficient RAD51 assembly onto DSB sites in cells treated with ionizing radiation (1012).The RAD51B (RAD51L1, Rec2) protein is a member of the RAD51 paralogs, which share about 20–30% amino acid sequence similarity with the RAD51 protein (3638). RAD51B-deficient cells are hypersensitive to DSB-inducing agents, such as cisplatin, mitomycin C (MMC), and γ-rays, indicating that the RAD51B protein is involved in the HRR pathway (3944). Genetic experiments revealed that RAD51B-deficient cells exhibited impaired RAD51 assembly onto DSB sites (39, 44), suggesting that the RAD51B protein functions in the early stage of the HRR pathway. Biochemical experiments also suggested that the RAD51B protein participates in the early to late stages of the HRR pathway (4547).In the present study, we found that the human EVL (Ena/Vasp-like) protein binds to the RAD51 and RAD51B proteins in a HeLa cell extract. The EVL protein is known to be involved in cytoplasmic actin remodeling (48) and is also overexpressed in breast cancer (49). Like the RAD51B knockdown cells, the EVL knockdown cells partially impaired RAD51 foci formation after DSB induction, suggesting that the EVL protein enhances RAD51 assembly onto DSB sites. The purified EVL protein preferentially bound to ssDNA and stimulated RAD51-mediated homologous pairing and strand exchange. The EVL protein also promoted the annealing of complementary strands. These recombination reactions that were stimulated or promoted by the EVL protein were further enhanced by the RAD51B protein. These results strongly suggested that the EVL protein is a novel factor that activates RAD51-mediated recombination reactions, probably with the RAD51B protein. We anticipate that, in addition to its involvement in cytoplasmic actin dynamics, the EVL protein may be required in homologous recombination for repairing specific DNA lesions, and it may cause tumor malignancy by inappropriate recombination enhanced by EVL overexpression in certain types of tumor cells.  相似文献   

17.
18.
Chromosomal abnormalities are frequently caused by problems encountered during DNA replication. Although the ATR-Chk1 pathway has previously been implicated in preventing the collapse of stalled replication forks into double-strand breaks (DSB), the importance of the response to fork collapse in ATR-deficient cells has not been well characterized. Herein, we demonstrate that, upon stalled replication, ATR deficiency leads to the phosphorylation of H2AX by ATM and DNA-PKcs and to the focal accumulation of Rad51, a marker of homologous recombination and fork restart. Because H2AX has been shown to play a facilitative role in homologous recombination, we hypothesized that H2AX participates in Rad51-mediated suppression of DSBs generated in the absence of ATR. Consistent with this model, increased Rad51 focal accumulation in ATR-deficient cells is largely dependent on H2AX, and dual deficiencies in ATR and H2AX lead to synergistic increases in chromatid breaks and translocations. Importantly, the ATM and DNA-PK phosphorylation site on H2AX (Ser139) is required for genome stabilization in the absence of ATR; therefore, phosphorylation of H2AX by ATM and DNA-PKcs plays a pivotal role in suppressing DSBs during DNA synthesis in instances of ATR pathway failure. These results imply that ATR-dependent fork stabilization and H2AX/ATM/DNA-PKcs-dependent restart pathways cooperatively suppress double-strand breaks as a layered response network when replication stalls.Genome maintenance prevents mutations that lead to cancer and age-related diseases. A major challenge in preserving genome integrity occurs in the simple act of DNA replication, in which failures at numerous levels can occur. Besides the mis-incorporation of nucleotides, it is during this phase of the cell cycle that the relatively stable double-stranded nature of DNA is temporarily suspended at the replication fork, a structure that is susceptible to collapse into DSBs.2 Replication fork stability is maintained by a variety of mechanisms, including activation of the ATR-dependent checkpoint pathway.The ATR pathway is activated upon the generation and recognition of extended stretches of single-stranded DNA at stalled replication forks (1-4). Genome maintenance functions for ATR and orthologs in yeast were first indicated by increased chromatid breaks in ATR-/- cultured cells (5) and by the “cut” phenotype observed in Mec1 (Saccharomyces cerevisiae) and Rad3 (Schizosaccharomyces pombe) mutants (6-9). Importantly, subsequent studies in S. cerevisiae demonstrated that mutation of Mec1 or the downstream checkpoint kinase Rad53 led to increased chromosome breaks at regions of the genome that are inherently difficult to replicate (10), and a decreased ability to reinitiate replication fork progression following DNA damage or deoxyribonucleotide depletion (11-14).In vertebrates, similar replication fork stabilizing functions have been demonstrated for ATR and the downstream protein kinase Chk1 (15-20). Several possible mechanisms have been put forward to explain how ATR-Chk1 and orthologous pathways in yeast maintain replication fork stability, including maintenance of replicative polymerases (α, δ, and ε) at forks (17, 21), regulation of branch migrating helicases, such as Blm (22-25), and regulation of homologous recombination, either positively or negatively (26-29).Consistent with the role of the ATR-dependent checkpoint in replication fork stability, common fragile sites, located in late-replicating regions of the genome, are significantly more unstable (5-10-fold) in the absence of ATR or Chk1 (19, 20). Because these sites are favored regions of instability in oncogene-transformed cells and preneoplastic lesions (30, 31), it is possible that the increased tumor incidence observed in ATR haploinsufficient mice (5, 32) may be related to subtle increases in genomic instability. Together, these studies indicate that maintenance of replication fork stability may contribute to tumor suppression.It is important to note that prevention of fork collapse represents an early response to problems occurring during DNA replication. In the event of fork collapse into DSBs, homologous recombination (HR) has also been demonstrated to play a key role in genome stability during S phase by catalyzing recombination between sister chromatids as a means to re-establish replication forks (33). Importantly, a facilitator of homologous recombination, H2AX, has been shown to be phosphorylated under conditions that cause replication fork collapse (18, 34).Phosphorylation of H2AX occurs predominantly upon DSB formation (34-38) and has been reported to require ATM, DNA-PKcs, or ATR, depending on the context (37-42). Although H2AX is not essential for HR, studies have demonstrated that H2AX mutation leads to deficiencies in HR (43, 44), and suppresses events associated with homologous recombination, such as the focal accumulation of Rad51, BRCA1, BRCA2, ubiquitinated-FANCD2, and Ubc13-mediated chromatin ubiquitination (43, 45-51). Therefore, through its contribution to HR, it is possible that H2AX plays an important role in replication fork stability as part of a salvage pathway to reinitiate replication following collapse.If ATR prevents the collapse of stalled replication forks into DSBs, and H2AX facilitates HR-mediated restart, the combined deficiency in ATR and H2AX would be expected to dramatically enhance the accumulation of DSBs upon replication fork stalling. Herein, we utilize both partial and complete elimination of ATR and H2AX to demonstrate that these genes work cooperatively in non-redundant pathways to suppress DSBs during S phase. As discussed, these studies imply that the various components of replication fork protection and regeneration cooperate to maintain replication fork stability. Given the large number of genes involved in each of these processes, it is possible that combined deficiencies in these pathways may be relatively frequent in humans and may synergistically influence the onset of age-related diseases and cancer.  相似文献   

19.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) plays a positive role in HER2-induced signaling and transformation, but its mechanism of action is poorly understood. Given the significance of HER2 in breast cancer, defining a mechanism for SHP2 in the HER2 signaling pathway is of paramount importance. In the current report we show that SHP2 positively modulates the Ras-extracellular signal-regulated kinase 1 and 2 and the phospoinositide-3-kinase-Akt pathways downstream of HER2 by increasing the half-life the activated form of Ras. This is accomplished by dephosphorylating an autophosphorylation site on HER2 that serves as a docking platform for the SH2 domains of the Ras GTPase-activating protein (RasGAP). The net effect is an increase in the intensity and duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling and cell transformation. In conformity to these findings, the HER2 mutant that lacks the SHP2 target site exhibits an enhanced signaling and cell transformation potential. Therefore, SHP2 promotes HER2-induced signaling and transformation at least in part by dephosphorylating a negative regulatory autophosphorylation site. These results suggest that SHP2 might serve as a therapeutic target against breast cancer and other cancers characterized by HER2 overexpression.The Src homology phosphotyrosyl phosphatase 2 (SHP2)2 functions as a positive effector of cell growth and survival (14), migration and invasion (58), and morphogenesis and transformation (911). In receptor-tyrosine kinase signaling (1214), SHP2 positively transduces the Ras-extracellular signal-regulated kinase 1 and 2 (ERK1/2) and the phosphoinositide-3-kinase-Akt (or protein kinase B) signaling pathways. SHP2 also promotes cell transformation induced by the constitutively active form of fibroblast growth factor receptor 3 and v-Src (9, 11). The discovery of germline-activating SHP2 mutations in Noonan and LEOPARD syndrome patients (1518) and the subsequent experimental demonstration of these phenotypes in knockin and transgenic mice expressing these mutants (19, 20) has led to the conclusion that disregulation of SHP2 is responsible for these disease states. Furthermore, somatic activating SHP2 mutations were discovered in juvenile myelomonocytic leukemia, acute myelogenous leukemia, and chronic myelomonocytic (18, 21) and are suggested to play a causative role.SHP2 possesses two Src homology 2 (SH2) domains in the N-terminal region that allow the protein to localize to substrate microdomains after tyrosyl phosphorylation of interacting proteins. The phosphotyrosyl phosphatase (PTP) domain in the C-terminal region is responsible for dephosphorylation of target substrates (13, 22). Mutation of the critical Cys residue in the active site of SHP2 abolishes its phosphatase activity, leading to the production of a dominant-negative protein (23). The activity of SHP2 is regulated by an intramolecular conformational switch. SHP2 assumes a “closed conformation” when inactive and an “open conformation” when active. In the closed conformation the N-SH2 domain interacts with the PTP domain, physically impeding the activity of the enzyme. Upon engagement of the SH2 domains with phosphotyrosine, the PTP domain is relieved of autoinhibition and dephosphorylates target substrates (2326). Interaction between specific residues on the N-SH2 and the PTP domains mediates the closed conformation. Mutation of these residues leads to a constitutively active SHP2, and the occurrence of such mutations in humans causes the development of Noonan syndrome and associated leukemia (1618).Recently, we have shown that inhibition of SHP2 in the HER2-positive breast cancer cell lines abolishes mitogenic and cell survival signaling and reverses transformation, leading to differentiation of malignant cells into a normal breast epithelial phenotype (27). Given the significance of HER2 in breast cancer, the finding that SHP2 plays a positive role was very interesting. We, thus, sought to investigate the molecular mechanism that underlies the positive role of SHP2 in HER2-induced signaling and transformation. To do so, it was first necessary to decipher the identity of SHP2 substrates whose dephosphorylation promotes the oncogenic functions of HER2. Using the recently developed substrate-trapping mutant of SHP2 as a reagent (28), we have identified HER2 itself as an SHP2 substrate. We have further shown that SHP2 dephosphorylates an autophosphorylation site on HER2 that serves as a docking site for the SH2 domains of the Ras GTPase-activating protein (Ras-GAP), the down-regulator of Ras. This effect of SHP2 increases the intensity and duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling and cell transformation.  相似文献   

20.
Formin-homology (FH) 2 domains from formin proteins associate processively with the barbed ends of actin filaments through many rounds of actin subunit addition before dissociating completely. Interaction of the actin monomer-binding protein profilin with the FH1 domain speeds processive barbed end elongation by FH2 domains. In this study, we examined the energetic requirements for fast processive elongation. In contrast to previous proposals, direct microscopic observations of single molecules of the formin Bni1p from Saccharomyces cerevisiae labeled with quantum dots showed that profilin is not required for formin-mediated processive elongation of growing barbed ends. ATP-actin subunits polymerized by Bni1p and profilin release the γ-phosphate of ATP on average >2.5 min after becoming incorporated into filaments. Therefore, the release of γ-phosphate from actin does not drive processive elongation. We compared experimentally observed rates of processive elongation by a number of different FH2 domains to kinetic computer simulations and found that actin subunit addition alone likely provides the energy for fast processive elongation of filaments mediated by FH1FH2-formin and profilin. We also studied the role of FH2 structure in processive elongation. We found that the flexible linker joining the two halves of the FH2 dimer has a strong influence on dissociation of formins from barbed ends but only a weak effect on elongation rates. Because formins are most vulnerable to dissociation during translocation along the growing barbed end, we propose that the flexible linker influences the lifetime of this translocative state.Formins are multidomain proteins that assemble unbranched actin filament structures for diverse processes in eukaryotic cells (reviewed in Ref. 1). Formins stimulate nucleation of actin filaments and, in the presence of the actin monomer-binding protein profilin, speed elongation of the barbed ends of filaments (2-6). The ability of formins to influence elongation depends on the ability of single formin molecules to remain bound to a growing barbed end through multiple rounds of actin subunit addition (7, 8). To stay associated during subunit addition, a formin molecule must translocate processively on the barbed end as each actin subunit is added (1, 9-12). This processive elongation of a barbed end by a formin is terminated when the formin dissociates stochastically from the growing end during translocation (4, 10).The formin-homology (FH)2 1 and 2 domains are the best conserved domains of formin proteins (2, 13, 14). The FH2 domain is the signature domain of formins, and in many cases, is sufficient for both nucleation and processive elongation of barbed ends (2-4, 7, 15). Head-to-tail homodimers of FH2 domains (12, 16) encircle the barbed ends of actin filaments (9). In vitro, association of barbed ends with FH2 domains slows elongation by limiting addition of free actin monomers. This “gating” behavior is usually explained by a rapid equilibrium of the FH2-associated end between an open state competent for actin monomer association and a closed state that blocks monomer binding (4, 9, 17).Proline-rich FH1 domains located N-terminal to FH2 domains are required for profilin to stimulate formin-mediated elongation. Individual tracks of polyproline in FH1 domains bind 1:1 complexes of profilin-actin and transfer the actin directly to the FH2-associated barbed end to increase processive elongation rates (4-6, 8, 10, 17).Rates of elongation and dissociation from growing barbed ends differ widely for FH1FH2 fragments from different formin homologs (4). We understand few aspects of FH1FH2 domains that influence gating, elongation or dissociation. In this study, we examined the source of energy for formin-mediated processive elongation, and the influence of FH2 structure on elongation and dissociation from growing ends. In contrast to previous proposals (6, 18), we found that fast processive elongation mediated by FH1FH2-formins is not driven by energy from the release of the γ-phosphate from ATP-actin filaments. Instead, the data show that the binding of an actin subunit to the barbed end provides the energy for processive elongation. We found that in similar polymerizing conditions, different natural FH2 domains dissociate from growing barbed ends at substantially different rates. We further observed that the length of the flexible linker between the subunits of a FH2 dimer influences dissociation much more than elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号