首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1 and Hsp90 help assemble the core kinetochore complex CBF3 by activating the CBF3 components Skp1 and Ctf13. In this study, we show that Sgt1 forms homodimers by performing in vitro and in vivo immunoprecipitation and analytical ultracentrifugation analyses. Analyses of the dimerization of Sgt1 deletion proteins showed that the Skp1-binding domain (amino acids 1–211) contains the Sgt1 homodimerization domain. Also, the Sgt1 mutant proteins that were unable to dimerize also did not bind Skp1, suggesting that Sgt1 dimerization is important for Sgt1-Skp1 binding. Restoring dimerization activity of a dimerization-deficient sgt1 mutant (sgt1-L31P) by using the CENP-B (centromere protein-B) dimerization domain suppressed the temperature sensitivity, the benomyl sensitivity, and the chromosome missegregation phenotype of sgt1-L31P. These results strongly suggest that Sgt1 dimerization is required for kinetochore assembly.Spindle microtubules are coupled to the centromeric region of the chromosome by a structural protein complex called the kinetochore (1, 2). The kinetochore is thought to generate a signal that arrests cells during mitosis when it is not properly attached to microtubules, thereby preventing aberrant chromosome transmission to the daughter cells, which can lead to tumorigenesis (3, 4). The kinetochore of the budding yeast Saccharomyces cerevisiae has been characterized thoroughly, genetically and biochemically; thus, its molecular structure is the most well detailed to date. More than 70 different proteins comprise the budding yeast kinetochore, and several of those are conserved in mammals (2).The budding yeast centromere DNA is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (5, 6). CDEI is bound by Cbf1 (79). CDEIII (25 bp) is essential for centromere function (10) and is the site where CBF3 binds to centromeric DNA. CBF3 contains four proteins: Ndc10, Cep3, Ctf13 (1118), and Skp1 (17, 18), all of which are essential for viability. Mutations in any of the four CBF3 proteins abolish the ability of CDEIII to bind to CBF3 (19, 20). All of the described kinetochore proteins, except the CDEI-binding Cbf1, localize to kinetochores dependent on the CBF3 complex (2). Therefore, the CBF3 complex is the fundamental structure of the kinetochore, and the mechanism of CBF3 assembly is of major interest.We previously isolated SGT1, the skp1-4 kinetochore-defective mutant dosage suppressor (21). Sgt1 and Skp1 activate Ctf13; thus, they are required for assembly of the CBF3 complex (21). The molecular chaperone Hsp90 is also required for the formation of the Skp1-Ctf13 complex (22). Sgt1 has two highly conserved motifs that are required for protein-protein interaction, the tetratricopeptide repeat (TPR)2 (21) and the CS (CHORD protein- and Sgt1-specific) motif. We and others (2326) have found that both domains are important for the interaction with Hsp90. The Sgt1-Hsp90 interaction is required for the assembly of the core kinetochore complex; this interaction is an initial step in kinetochore assembly (24, 26, 27) that is conserved between yeast and humans (28, 29).In this study, we further characterized the molecular mechanism of this assembly process. We found that Sgt1 forms dimers in vivo, and our results strongly suggest that Sgt1 dimerization is required for kinetochore assembly in budding yeast.  相似文献   

2.
In archaea and eukarya, box C/D ribonucleoprotein (RNP) complexes are responsible for 2′-O-methylation of tRNAs and rRNAs. The archaeal box C/D small RNP complex requires a small RNA component (sRNA) possessing Watson-Crick complementarity to the target RNA along with three proteins: L7Ae, Nop5p, and fibrillarin. Transfer of a methyl group from S-adenosylmethionine to the target RNA is performed by fibrillarin, which by itself has no affinity for the sRNA-target duplex. Instead, it is targeted to the site of methylation through association with Nop5p, which in turn binds to the L7Ae-sRNA complex. To understand how Nop5p serves as a bridge between the targeting and catalytic functions of the box C/D small RNP complex, we have employed alanine scanning to evaluate the interaction between the Pyrococcus horikoshii Nop5p domain and an L7Ae box C/D RNA complex. From these data, we were able to construct an isolated RNA-binding domain (Nop-RBD) that folds correctly as demonstrated by x-ray crystallography and binds to the L7Ae box C/D RNA complex with near wild type affinity. These data demonstrate that the Nop-RBD is an autonomously folding and functional module important for protein assembly in a number of complexes centered on the L7Ae-kinkturn RNP.Many biological RNAs require extensive modification to attain full functionality in the cell (1). Currently there are over 100 known RNA modification types ranging from small functional group substitutions to the addition of large multi-cyclic ring structures (2). Transfer RNA, one of many functional RNAs targeted for modification (3-6), possesses the greatest modification type diversity, many of which are important for proper biological function (7). Ribosomal RNA, on the other hand, contains predominantly two types of modified nucleotides: pseudouridine and 2′-O-methylribose (8). The crystal structures of the ribosome suggest that these modifications are important for proper folding (9, 10) and structural stabilization (11) in vivo as evidenced by their strong tendency to localize to regions associated with function (8, 12, 13). These roles have been verified biochemically in a number of cases (14), whereas newly emerging functional modifications are continually being investigated.Box C/D ribonucleoprotein (RNP)3 complexes serve as RNA-guided site-specific 2′-O-methyltransferases in both archaea and eukaryotes (15, 16) where they are referred to as small RNP complexes and small nucleolar RNPs, respectively. Target RNA pairs with the sRNA guide sequence and is methylated at the 2′-hydroxyl group of the nucleotide five bases upstream of either the D or D′ box motif of the sRNA (Fig. 1, star) (17, 18). In archaea, the internal C′ and D′ motifs generally conform to a box C/D consensus sequence (19), and each sRNA contains two guide regions ∼12 nucleotides in length (20). The bipartite architecture of the RNP potentially enables the complex to methylate two distinct RNA targets (21) and has been shown to be essential for site-specific methylation (22).Open in a separate windowFIGURE 1.Organization of the archaeal box C/D complex. The protein components of this RNP are L7Ae, Nop5p, and fibrillarin, which together bind a box C/D sRNA. The regions of the Box C/D sRNA corresponding to the conserved C, D, C′, and D′ boxes are labeled. The target RNA binds the sRNA through Watson-Crick pairing and is methylated by fibrillarin at the fifth nucleotide from the D/D′ boxes (star).In addition to the sRNA, the archaeal box C/D complex requires three proteins for activity (23): the ribosomal protein L7Ae (24, 25), fibrillarin, and the Nop56/Nop58 homolog Nop5p (Fig. 1). L7Ae binds to both box C/D and the C′/D′ motifs (26), which respectively comprise kink-turn (27) or k-loop structures (28), to initiate the assembly of the RNP (29, 30). Fibrillarin performs the methyl group transfer from the cofactor S-adenosylmethionine to the target RNA (31-33). For this to occur, the active site of fibrillarin must be positioned precisely over the specific 2′-hydroxyl group to be methylated. Although fibrillarin methylates this functional group in the context of a Watson-Crick base-paired helix (guide/target), it has little to no binding affinity for double-stranded RNA or for the L7Ae-sRNA complex (22, 26, 33, 34). Nop5p serves as an intermediary protein bringing fibrillarin to the complex through its association with both the L7Ae-sRNA complex and fibrillarin (22). Along with its role as an intermediary between fibrillarin and the L7Ae-sRNA complex, Nop5p possesses other functions not yet fully understood. For example, Nop5p self-dimerizes through a coiled-coil domain (35) that in most archaea and eukaryotic homologs includes a small insertion sequence of unknown function (36, 37). However, dimerization and fibrillarin binding have been shown to be mutually exclusive in Methanocaldococcus jannaschii Nop5p, potentially because of the presence of this insertion sequence (36). Thus, whether Nop5p is a monomer or a dimer in the active RNP is still under debate.In this study, we focus our attention on the Nop5p protein to investigate its interaction with a L7Ae box C/D RNA complex because both the fibrillarin-Nop5p and the L7Ae box C/D RNA interfaces are known from crystal structures (29, 35, 38). Individual residues on the surface of a monomeric form of Nop5p (referred to as mNop5p) (22) were mutated to alanine, and the effect on binding affinity for a L7Ae box C/D motif RNA complex was assessed through the use of electrophoretic mobility shift assays. These data reveal that residues important for binding cluster within the highly conserved NOP domain (39, 40). To demonstrate that this domain is solely responsible for the affinity of Nop5p for the preassembled L7Ae box C/D RNA complex, we expressed and purified it in isolation from the full Nop5p protein. The isolated Nop-RBD domain binds to the L7Ae box C/D RNA complex with nearly wild type affinity, demonstrating that the Nop-RBD is truly an autonomously folding and functional module. Comparison of our data with the crystal structure of the homologous spliceosomal hPrp31-15.5K protein-U4 snRNA complex (41) suggests the adoption of a similar mode of binding, further supporting a crucial role for the NOP domain in RNP complex assembly.  相似文献   

3.
Cytokinesis in bacteria depends upon the contractile Z ring, which is composed of dynamic polymers of the tubulin homolog FtsZ as well as other membrane-associated proteins such as FtsA, a homolog of actin that is required for membrane attachment of the Z ring and its subsequent constriction. Here we show that a previously characterized hypermorphic mutant FtsA (FtsA*) partially disassembled FtsZ polymers in vitro. This effect was strictly dependent on ATP or ADP binding to FtsA* and occurred at substoichiometric levels relative to FtsZ, similar to cellular levels. Nucleotide-bound FtsA* did not affect FtsZ GTPase activity or the critical concentration for FtsZ assembly but was able to disassemble preformed FtsZ polymers, suggesting that FtsA* acts on FtsZ polymers. Microscopic examination of the inhibited FtsZ polymers revealed a transition from long, straight polymers and polymer bundles to mainly short, curved protofilaments. These results indicate that a bacterial actin, when activated by adenine nucleotides, can modify the length distribution of bacterial tubulin polymers, analogous to the effects of actin-depolymerizing factor/cofilin on F-actin.Bacterial cell division requires a large number of proteins that colocalize to form a putative protein machine at the cell membrane (1). This machine, sometimes called the divisome, recruits enzymes to synthesize the septum cell wall and to initiate and coordinate the invagination of the cytoplasmic membrane (and in Gram-negative bacteria, the outer membrane). The most widely conserved and key protein for this process is FtsZ, a homolog of tubulin that forms a ring structure called the Z ring, which marks the site of septum formation (2, 3). Like tubulin, FtsZ assembles into filaments with GTP but does not form microtubules (4). The precise assembly state and conformation of these FtsZ filaments at the division ring is not clear, although recent electron tomography work suggests that the FtsZ ring consists of multiple short filaments tethered to the membrane at discrete junctures (5), which may represent points along the filaments bridged by membrane anchor proteins.In Escherichia coli, two of these anchor proteins are known. One of these, ZipA, is not well conserved but is an essential protein in E. coli. ZipA binds to the C-terminal tail of FtsZ (68), and purified ZipA promotes bundling of FtsZ filaments in vitro (9, 10). The other, FtsA, is also essential in E. coli and is more widely conserved among bacterial species. FtsA is a member of the HSP70/actin superfamily (11, 12), and like ZipA, it interacts with the C-terminal tail of FtsZ (7, 1315). FtsA can self-associate (16, 17) and bind ATP (12, 18), but reports of ATPase activity vary, with Bacillus subtilis FtsA having high activity (19) and Streptococcus pneumoniae FtsA exhibiting no detectable activity (20). There are no reports of any other in vitro activities of FtsA, including effects on FtsZ assembly.Understanding how FtsA affects FtsZ assembly is important because FtsA has a number of key activities in the cell. It is required for recruitment of a number of divisome proteins (21, 22) and helps to tether the Z ring to the membrane via a C-terminal membrane-targeting sequence (23). FtsA, like ZipA and other divisome proteins, is necessary to activate the contraction of the Z ring (24, 25). In E. coli, the FtsA:FtsZ ratio is crucial for proper cell division, with either too high or too low a ratio inhibiting septum formation (26, 27). This ratio is roughly 1:5, with ∼700 molecules of FtsA and 3200 molecules of FtsZ per cell (28), which works out to concentrations of 1–2 and 5–10 μm, respectively.Another interesting property of FtsA is that single residue alterations in the protein can result in significant enhancement of divisome activity. For example, the R286W mutation of FtsA, also called FtsA*, can substitute for the native FtsA and divide the cell. However, this mutant FtsA causes E. coli cells to divide at less than 80% of their normal length (29) and allows efficient division of E. coli cells in the absence of ZipA (30), indicating that it has gain-of-function activity. FtsA* and other hypermorphic mutations such as E124A and I143L can also increase division activity in cells lacking other essential divisome components (3133). The R286W and E124A mutants of FtsA also bypass the FtsA:FtsZ ratio rule, allowing cell division to occur at higher ratios than with WT2 FtsA. This may be because the altered FtsA proteins self-associate more readily than WT FtsA, which may cause different changes in FtsZ assembly state as compared with WT FtsA (17, 34).In this study, we use an in vitro system with purified FtsZ and a purified tagged version of FtsA* to elucidate the role of FtsA in activating constriction of the Z ring in vivo. We show that FtsA*, at physiological concentrations in the presence of ATP or ADP, has significant effects on the assembly of FtsZ filaments.  相似文献   

4.
5.
During homologous recombination, a number of proteins cooperate to catalyze the loading of recombinases onto single-stranded DNA. Single-stranded DNA-binding proteins stimulate recombination by coating single-stranded DNA and keeping it free of secondary structure; however, in order for recombinases to load on single-stranded-DNA-binding protein-coated DNA, the activity of a class of proteins known as recombination mediators is required. Mediator proteins coordinate the handoff of single-stranded DNA from single-stranded DNA-binding protein to recombinase. Here we show that a complex of Mei5 and Sae3 from Saccharomyces cerevisiae preferentially binds single-stranded DNA and relieves the inhibition of the strand assimilation and DNA binding abilities of the meiotic recombinase Dmc1 imposed by the single-stranded DNA-binding protein replication protein A. Additionally, we demonstrate the physical interaction of Mei5-Sae3 with replication protein A. Our results, together with previous in vivo studies, indicate that Mei5-Sae3 is a mediator of Dmc1 assembly during meiotic recombination in S. cerevisiae.During meiosis, recombination between homologous chromosomes ensures proper segregation into haploid products. Recombination events are initiated by the formation of double strand breaks (DSBs)2 in DNA (1). This is followed by resection of free DNA ends to yield 3′ single-stranded tails, upon which recombinase assembles to form nucleoprotein filaments. Following recombinase assembly, the nucleoprotein filament engages a donor chromatid, searches for homologous DNA sequences on that chromatid, and promotes strand exchange to yield a heteroduplex DNA intermediate often referred to as a joint molecule. Although recombinase alone is capable of promoting homology search and strand exchange in vitro, genetic and biochemical studies have demonstrated that normal recombinase function in vivo requires the activity of a number of accessory factors (2). These factors enhance the assembly of nucleoprotein filaments, target capture, homology search, and dissociation of recombinase from duplex DNA.Most eukaryotes possess two recombinases, both homologues of the Escherichia coli recombinase RecA: Rad51, which is the major recombinase in mitotic cells and is also important during meiotic recombination, and Dmc1, which functions only in meiosis. Dmc1 and Rad51 have been shown to assemble at DSBs by immunofluorescence and chromatin immunoprecipitation (36), and both proteins oligomerize on single-stranded DNA (ssDNA) to form nucleofilaments that catalyze strand invasion (79).A number of biochemical studies have defined the role of accessory factors in stimulating the activity of Rad51 (1012). Replication protein A (RPA), the yeast ssDNA-binding protein (SSB), removes secondary structure in ssDNA that otherwise prevents formation of fully functional nucleoprotein filaments (13). Both Rad52 protein (11, 12) and the heterodimeric protein Rad55/Rad57 (14) can overcome the inhibitory effect of RPA on Rad51 nucleoprotein filament formation in purified systems, mediating a handoff between RPA and Rad51. It is thought that the mechanism for the mediator activity of Rad52 involves Rad52 recognizing and binding to RPA-coated ssDNA, where it provides nucleation sites for the recruitment of free molecules of Rad51 (15). The tumor suppressor protein BRCA2 also serves as an assembly factor for Rad51 during mitosis in a variety of species that encode orthologues of this protein, including mice (16), corn smut (17), and humans (18).The meiosis-specific recombinase Dmc1 is stimulated by a distinct set of accessory factors. Immunostaining studies suggest that the Rad51 mediators Rad52 and Rad55/Rad57 are not required for assembly of Dmc1 foci in vivo, although Rad51 itself promotes Dmc1 foci (1921). More recently, immunostaining and chromatin immunoprecipitation experiments demonstrated a role for the Mei5 and Sae3 proteins of Saccharomyces cerevisiae in assembly of Dmc1 at sites of DSBs in vivo (22, 23). Consistent with these observations, mei5 and sae3 mutants display markedly similar meiotic defects as compared with dmc1 mutants, including defects in sporulation, spore viability, crossing over, DSB repair, progression through meiosis, and synaptonemal complex formation (19, 2224). Finally, the three proteins have been shown to physically interact; Mei5 and Sae3 have been co-purified and co-immunoprecipitated, and an N-terminal portion of Mei5 has been shown to interact with Dmc1 in a two-hybrid assay (22).The fission yeast Schizosaccharomyces pombe encodes two proteins, Swi5 and Sfr1, which share sequence homology with Sae3 and Mei5, respectively (22). Swi5 and Sfr1 have been shown to stimulate the strand exchange activity of Rhp51 (the S. pombe Rad51 homologue) and Dmc1 (25). Although some results indicate functional similarity of Swi5-Sfr1 and Mei5-Sae3, there are also clear differences. The Mei5-Sae3 complex of budding yeast is expressed solely during meiosis, and no mitotic phenotypes have been reported for mei5 or sae3 mutants (22, 24, 26). In contrast, the Swi5-Sfr1 complex of fission yeast is expressed in mitotic and meiotic cells, and mutations in SWI5 have been shown to cause defects in mitotic recombination (27). Furthermore, although mei5 and sae3 mutants are phenotypically similar to dmc1 mutants, swi5 and sfr1 mutants display more severe meiotic defects during fission yeast meiosis than do dmc1 mutants (2729). These data suggest that although Swi5-Sfr1 clearly contributes to Rad51 activity in fission yeast, it is possible that the activity of Mei5-Sae3 is restricted to stimulating Dmc1 in budding yeast.In this study, a biochemical approach is used to test the budding yeast Mei5-Sae3 complex for properties expected of a recombinase assembly mediator. We show that Mei5-Sae3 binds both ssDNA and double-stranded DNA (dsDNA) but binds ssDNA preferentially. We also show that Mei5-Sae3 can overcome the inhibitory effects of RPA on the ssDNA binding and strand assimilation activities of Dmc1. Finally, we show that Mei5-Sae3 and RPA bind one another directly. These results indicate that Mei5-Sae3 acts directly as a mediator protein for assembly of Dmc1.  相似文献   

6.
7.
Gluconeogenesis is an important metabolic pathway, which produces glucose from noncarbohydrate precursors such as organic acids, fatty acids, amino acids, or glycerol. Fructose-1,6-bisphosphatase, a key enzyme of gluconeogenesis, is found in all organisms, and five different classes of these enzymes have been identified. Here we demonstrate that Escherichia coli has two class II fructose-1,6-bisphosphatases, GlpX and YggF, which show different catalytic properties. We present the first crystal structure of a class II fructose-1,6-bisphosphatase (GlpX) determined in a free state and in the complex with a substrate (fructose 1,6-bisphosphate) or inhibitor (phosphate). The crystal structure of the ligand-free GlpX revealed a compact, globular shape with two α/β-sandwich domains. The core fold of GlpX is structurally similar to that of Li+-sensitive phosphatases implying that they have a common evolutionary origin and catalytic mechanism. The structure of the GlpX complex with fructose 1,6-bisphosphate revealed that the active site is located between two domains and accommodates several conserved residues coordinating two metal ions and the substrate. The third metal ion is bound to phosphate 6 of the substrate. Inorganic phosphate strongly inhibited activity of both GlpX and YggF, and the crystal structure of the GlpX complex with phosphate demonstrated that the inhibitor molecule binds to the active site. Alanine replacement mutagenesis of GlpX identified 12 conserved residues important for activity and suggested that Thr90 is the primary catalytic residue. Our data provide insight into the molecular mechanisms of the substrate specificity and catalysis of GlpX and other class II fructose-1,6-bisphosphatases.Fructose-1,6-bisphosphatase (FBPase,2 EC 3.1.3.11), a key enzyme of gluconeogenesis, catalyzes the hydrolysis of fructose 1,6-bisphosphate to form fructose 6-phosphate and orthophosphate. It is the reverse of the reaction catalyzed by phosphofructokinase in glycolysis, and the product, fructose 6-phosphate, is an important precursor in various biosynthetic pathways (1). In all organisms, gluconeogenesis is an important metabolic pathway that allows the cells to synthesize glucose from noncarbohydrate precursors, such as organic acids, amino acids, and glycerol. FBPases are members of the large superfamily of lithium-sensitive phosphatases, which includes three families of inositol phosphatases and FBPases (the phosphoesterase clan CL0171, 3167 sequences, Pfam data base). These enzymes show metal-dependent and lithium-sensitive phosphomonoesterase activity and include inositol polyphosphate 1-phosphatases, inositol monophosphatases (IMPases), 3′-phosphoadenosine 5′-phosphatases (PAPases), and enzymes acting on both inositol 1,4-bisphosphate and PAP (PIPases) (2). They possess a common structural core with the active site lying between α+β and α/β domains (3). Li+-sensitive phosphatases are putative targets for lithium therapy in the treatment of manic depressive patients (4), whereas FBPases are targets for the development of drugs for the treatment of noninsulin-dependent diabetes (5, 6). In addition, FBPase is required for virulence in Mycobacterium tuberculosis and Leishmania major and plays an important role in the production of lysine and glutamate by Corynebacterium glutamicum (7, 8).Presently, five different classes of FBPases have been proposed based on their amino acid sequences (FBPases I to V) (911). Eukaryotes contain only the FBPase I-type enzyme, but all five types exist in various prokaryotes. Types I, II, and III are primarily in bacteria, type IV in archaea (a bifunctional FBPase/inositol monophosphatase), and type V in thermophilic prokaryotes from both domains (11). Many organisms have more than one FBPase, mostly the combination of types I + II or II + III, but no bacterial genome has a combination of types I and III FBPases (9). The type I FBPase is the most widely distributed among living organisms and is the primary FBPase in Escherichia coli, most bacteria, a few archaea, and all eukaryotes (9, 1115). The type II FBPases are represented by the E. coli GlpX and FBPase F-I from Synechocystis PCC6803 (9, 16); type III is represented by the Bacillus subtilis FBPase (17); type IV is represented by the dual activity FBPases/inosine monophosphatases FbpA from Pyrococcus furiosus (18), MJ0109 from Methanococcus jannaschii (19), and AF2372 from Archaeoglobus fulgidus (20); and type V is represented by the FBPases TK2164 from Pyrococcus (Thermococcus) kodakaraensis and ST0318 from Sulfolobus tokodai (10, 21).Three-dimensional structures of the type I (from pig kidney, spinach chloroplasts, and E. coli), type IV (MJ0109 and AF2372), and type V (ST0318) FBPases have been solved (10, 11, 19, 20, 22, 23). FBPases I and IV and inositol monophosphatases share a common sugar phosphatase fold organized in five layered interleaved α-helices and β-sheets (α-β-α-β-α) (2, 19, 24). ST0318 (an FBPase V enzyme) is composed of one domain with a completely different four-layer α-β-β-α fold (10). The FBPases from these three classes (I, IV, and V) require divalent cations for activity (Mg2+, Mn2+, or Zn2+), and their structures have revealed the presence of three or four metal ions in the active site.E. coli has five Li+-sensitive phosphatases as follows: CysQ (a PAPase), SuhB (an IMPase), Fbp (a FBPase I enzyme), GlpX (a FBPase II), and YggF (an uncharacterized protein) (see the Pfam data base). CysQ is a 3′-phosphoadenosine 5′-phosphatase involved in the cysteine biosynthesis pathway (25, 26), whereas SuhB is an inositol monophosphatase (IMPase) that is also known as a suppressor of temperature-sensitive growth phenotypes in E. coli (27, 28). Fbp is required for growth on gluconeogenic substrates and probably represents the main gluconeogenic FBPase (12). This enzyme has been characterized both biochemically and structurally and shown to be inhibited by low concentrations of AMP (IC50 15 μm) (11, 29, 30). The E. coli GlpX, a class II enzyme FBPase, has been shown to possess a Mn2+-dependent FBPase activity (9). The increased expression of glpX from a multicopy plasmid complemented the Fbp- phenotype; however, the glpX knock-out strain grew normally on gluconeogenic substrates (succinate or glycerol) (9).In this study, we present the first structure of a class II FBPase, the E. coli GlpX, in a free state and in the complex with FBP + metals or phosphate. We have demonstrated that the fold of GlpX is similar to that of the lithium-sensitive phosphatases. We have identified the GlpX residues important for activity and proposed a catalytic mechanism. We have also showed that YggF is a third FBPase in E. coli, which has distinct catalytic properties and is more sensitive than GlpX to the inhibition by lithium or phosphate.  相似文献   

8.
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.Chromosomal DNA double strand breaks (DSBs)2 are potential inducers of chromosomal aberrations and tumorigenesis, and they are accurately repaired by the homologous recombinational repair (HRR) pathway, without base substitutions, deletions, and insertions (13). In the HRR pathway (4, 5), single-stranded DNA (ssDNA) tails are produced at the DSB sites. The RAD51 protein, a eukaryotic homologue of the bacterial RecA protein, binds to the ssDNA tail and forms a helical nucleoprotein filament. The RAD51-ssDNA filament then binds to the intact double-stranded DNA (dsDNA) to form a three-component complex, containing ssDNA, dsDNA, and the RAD51 protein. In this three-component complex, the RAD51 protein promotes recombination reactions, such as homologous pairing and strand exchange (69).The RAD51 protein requires auxiliary proteins to promote the homologous pairing and strand exchange reactions efficiently in cells (1012). In humans, the RAD52, RAD54, and RAD54B proteins directly interact with the RAD51 protein (1317) and stimulate the RAD51-mediated homologous pairing and/or strand exchange reactions in vitro (1821). The human RAD51AP1 protein, which directly binds to the RAD51 protein (22), was also found to stimulate RAD51-mediated homologous pairing in vitro (23, 24). The BRCA2 protein contains ssDNA-binding, dsDNA-binding, and RAD51-binding motifs (2533), and the Ustilago maydis BRCA2 ortholog, Brh2, reportedly stimulated RAD51-mediated strand exchange (34, 35). Most of these RAD51-interacting factors are known to be required for efficient RAD51 assembly onto DSB sites in cells treated with ionizing radiation (1012).The RAD51B (RAD51L1, Rec2) protein is a member of the RAD51 paralogs, which share about 20–30% amino acid sequence similarity with the RAD51 protein (3638). RAD51B-deficient cells are hypersensitive to DSB-inducing agents, such as cisplatin, mitomycin C (MMC), and γ-rays, indicating that the RAD51B protein is involved in the HRR pathway (3944). Genetic experiments revealed that RAD51B-deficient cells exhibited impaired RAD51 assembly onto DSB sites (39, 44), suggesting that the RAD51B protein functions in the early stage of the HRR pathway. Biochemical experiments also suggested that the RAD51B protein participates in the early to late stages of the HRR pathway (4547).In the present study, we found that the human EVL (Ena/Vasp-like) protein binds to the RAD51 and RAD51B proteins in a HeLa cell extract. The EVL protein is known to be involved in cytoplasmic actin remodeling (48) and is also overexpressed in breast cancer (49). Like the RAD51B knockdown cells, the EVL knockdown cells partially impaired RAD51 foci formation after DSB induction, suggesting that the EVL protein enhances RAD51 assembly onto DSB sites. The purified EVL protein preferentially bound to ssDNA and stimulated RAD51-mediated homologous pairing and strand exchange. The EVL protein also promoted the annealing of complementary strands. These recombination reactions that were stimulated or promoted by the EVL protein were further enhanced by the RAD51B protein. These results strongly suggested that the EVL protein is a novel factor that activates RAD51-mediated recombination reactions, probably with the RAD51B protein. We anticipate that, in addition to its involvement in cytoplasmic actin dynamics, the EVL protein may be required in homologous recombination for repairing specific DNA lesions, and it may cause tumor malignancy by inappropriate recombination enhanced by EVL overexpression in certain types of tumor cells.  相似文献   

9.
10.
Intermedilysin (ILY) is an unusual member of the family of cholesterol-dependent cytolysins because it binds to human CD59 (hCD59) rather than directly to cholesterol-rich membranes. Binding of ILY to hCD59 initiates a series of conformational changes within the toxin that result in the conversion of the soluble monomer into an oligomeric membrane-embedded pore complex. In this study the association of ILY with its membrane receptor has been examined throughout the assembly and formation of the pore complex. Using ILY mutants trapped at various stages of pore assembly, we show ILY remains engaged with hCD59 throughout the assembly of the prepore oligomer, but it disengages from the receptor upon the conversion to the pore complex. We further show that the assembly intermediates increase the sensitivity of the host cell to lysis by its complement membrane attack complex, apparently by blocking the hCD59-binding site for complement proteins C8α and C9.The cholesterol-dependent cytolysins (CDC)2 are a family of structurally related pore-forming toxins that are important virulence factors for a variety of Gram-positive pathogens (14). The CDCs are secreted by the bacterium as soluble monomers and then bind to cholesterol-rich eukaryotic cell membranes (5). Once bound, the monomers laterally diffuse and interact with one another to form a large oligomeric prepore structure comprised of 35–40 CDC monomers. One of the hallmarks of this family of toxins is the absolute requirement of their pore-forming mechanism on membrane cholesterol (1). Membrane cholesterol serves to target the CDCs to the eukaryotic cell membrane and is necessary to convert the prepore oligomer to the inserted pore complex (6). Two classes of CDCs currently exist. The first class is typified by perfringolysin O (PFO) from Clostridium perfringens that appears to bind directly to cholesterol-rich membranes, an interaction mediated by three short loops in domain 4 (7). The second group includes intermedilysin (ILY) from Streptococcus intermedius and vaginolysin from Gardnerella vaginalis (8). These CDCs bind to the glycosylphosphatidylinositol-anchored protein human CD59 (hCD59). It has been shown for ILY that it first binds hCD59 and then inserts its domain 4 loops in a cholesterol-dependent fashion (7). Why the latter two CDCs have evolved to specifically bind hCD59 and whether they remain engaged with this receptor throughout the assembly of the pore complex remains unclear. S. intermedius is a pathogen frequently associated with abscesses of the oral cavity as well as with life-threatening abscesses of the head, neck, and liver (9, 10). ILY appears to be important in establishing these deep-seated abscesses as S. intermedius isolated from these sites produces levels of ILY 6–10 times greater than strains isolated from peripheral site infections or the oropharynx (9). ILY binds only human cells, whereas other CDCs, such as PFO, bind to most cholesterol-rich eukaryotic membranes. The species selectivity of ILY is because of its specificity for human hCD59 and appears to be encoded in domain 4 of the toxin (11, 12).CD59 is an 18–20-kDa surface-expressed glycoprotein tethered to the cell membrane via a glycosylphosphatidylinositol anchor. It is widely distributed on most human and nonhuman cell types. It is associated with a number of important cellular functions that include serving as an adaptor molecule for a candidate C1q receptor (C1qRO2) (13, 14) and acting as a cell-signaling molecule (15). Its primary role, however, is regulating the terminal pathway of complement by inhibiting the formation of the membrane attack complex (MAC) on host cells by binding to C8α and C9, thus preventing the formation of the MAC pore (1618). In various autoimmune diseases and inflammatory conditions, excessive complement activation can saturate the available CD59 resulting in MAC-mediated host cell injury (19). CD59 exhibits species selectivity such that it most effectively inhibits only the homologous MAC (20). ILY recognition of the same or similar structural differences in CD59 is the basis for its species selective activity (11).ILY binding to hCD59 triggers a series of conformational changes in ILY leading to its membrane oligomerization into the prepore complex (6). This is accompanied by the cholesterol-dependent insertion of three loops at the base of domain 4 and the insertion of the undecapeptide, events that are necessary for the conversion of the prepore to a pore complex (7). It is not known, however, whether ILY remains engaged with hCD59 throughout its assembly into the pore complex. Whether ILY remains engaged during and after the assembly of the pore complex may also impact the ability of the eukaryotic cell to protect itself from the host MAC because a previous study suggested the ILY-binding site on hCD59 overlaps that for complement proteins C8α and C9 (11). To address these questions, we investigated the interaction of ILY with hCD59 during the assembly of the ILY pore complex. We further determined whether nonlytic assembly intermediates of ILY increase MAC-mediated damage to host cells by short circuiting the protective function of hCD59. These studies show ILY remains engaged during the assembly of its prepore complex and disengages from its receptor upon pore formation. In addition, we show that engagement of hCD59 by ILY prior to pore formation significantly increases the host cell sensitivity to the host MAC-mediated lysis.  相似文献   

11.
Bacillus cereus and other Gram-positive bacteria elaborate pili via a sortase D-catalyzed transpeptidation mechanism from major and minor pilin precursor substrates. After cleavage of the LPXTG sorting signal of the major pilin, BcpA, sortase D forms an amide bond between the C-terminal threonine and the amino group of lysine within the YPKN motif of another BcpA subunit. Pilus assembly terminates upon sortase A cleavage of the BcpA sorting signal, resulting in a covalent bond between BcpA and the cell wall cross-bridge. Here, we show that the IPNTG sorting signal of BcpB, the minor pilin, is cleaved by sortase D but not by sortase A. The C-terminal threonine of BcpB is amide-linked to the YPKN motif of BcpA, thereby positioning BcpB at the tip of pili. Thus, unique attributes of the sorting signals of minor pilins provide Gram-positive bacteria with a universal mechanism ordering assembly of pili.Sortases catalyze transpeptidation reactions to assemble proteins in the envelope of Gram-positive bacteria (1). Secreted proteins require a C-terminal sorting signal for sortase recognition such that sortase cleaves the substrate at a short peptide motif and forms a thioester-linked intermediate to its active site cysteine (24). Nucleophilic attack by an amino group within the bacterial envelope resolves the thioester intermediate, generating an amide bond tethering surface proteins at their C terminus onto Gram-positive bacteria (5). Four classes of sortases can be distinguished on the basis of sequence homology and substrate recognition (6, 7). Sortase A cleaves secreted protein at LPXTG sorting signals and recognizes the amino group of lipid II peptidoglycan precursors as a nucleophile (8, 9). Sortase B cleaves protein substrates at NPQTN sorting signals (10). This enzyme immobilizes proteins within fully assembled cell walls, utilizing the cell wall cross-bridge as a nucleophile (11). Sortase C cuts LPNTA sorting signals and anchors proteins to the peptidoglycan cross-bridges in sporulating bacteria (12, 13). Finally, sortase D catalyzes transpeptidation reactions in the assembly of pili (14, 15). Sortase D recognizes the amino group of lysine residues within the YPKN motif of pilin subunits as nucleophiles (16). The resultant sortase D-catalyzed amide bond links adjacent pilin subunits to grow the pilus fiber (16, 17).Pili of Gram-positive bacteria comprised either two or three different pilin subunits synthesized as cytoplasmic precursors with N-terminal signal peptides and C-terminal sorting signals (P1 precursors) (14, 18). After translocation across the plasma membrane, P2 precursor species arise from removal of the signal peptide from P1 precursors by a signal peptidase (16). Bacillus cereus pili are composed of two subunits; that is, the major pilin, BcpA, and the minor pilin, BcpB (15). In contrast to BcpA, which is deposited throughout the pilus, BcpB is found at fiber tip (15). Sortase D cleaves the BcpA LPXTG motif sorting signal between the threonine and glycine residues to form an amide bond to the ε-amino group of the lysine within the YPKN motif of adjacent BcpA subunits (16). However, sortase A also cleaves BcpA precursors, which are subsequently linked to the side chain amino group of meso-diaminopimelic acid within lipid II (19). The latter reaction serves to terminate fiber elongation, immobilizing BcpA pili in the cell wall envelope (19).The conservation of sortase D, the YPKN motif, and C-terminal sorting signal in major pilin subunits suggest a universal pilus assembly mechanism among Gram-positive bacteria (14, 20). However, the molecular mechanism whereby bacilli deposit BcpB, the minor pilin, at the tip of BcpA pili is not known. Although the BcpB precursor harbors an N-terminal signal peptide and a C-terminal IPNTG sorting signal, it lacks the YPKN pilin motif of the major subunit (15). Furthermore, the substrate properties of the BcpB IPNTG sorting signal for the four classes of sortases expressed by bacilli has yet to be established.  相似文献   

12.
Aggregation of the Ure2 protein is at the origin of the [URE3] prion trait in the yeast Saccharomyces cerevisiae. The N-terminal region of Ure2p is necessary and sufficient to induce the [URE3] phenotype in vivo and to polymerize into amyloid-like fibrils in vitro. However, as the N-terminal region is poorly ordered in the native state, making it difficult to detect structural changes in this region by spectroscopic methods, detailed information about the fibril assembly process is therefore lacking. Short fibril-forming peptide regions (4–7 residues) have been identified in a number of prion and other amyloid-related proteins, but such short regions have not yet been identified in Ure2p. In this study, we identify a unique cysteine mutant (R17C) that can greatly accelerate the fibril assembly kinetics of Ure2p under oxidizing conditions. We found that the segment QVNI, corresponding to residues 18–21 in Ure2p, plays a critical role in the fast assembly properties of R17C, suggesting that this segment represents a potential amyloid-forming region. A series of peptides containing the QVNI segment were found to form fibrils in vitro. Furthermore, the peptide fibrils could seed fibril formation for wild-type Ure2p. Preceding the QVNI segment with a cysteine or a hydrophobic residue, instead of a charged residue, caused the rate of assembly into fibrils to increase greatly for both peptides and full-length Ure2p. Our results indicate that the potential amyloid stretch and its preceding residue can modulate the fibril assembly of Ure2p to control the initiation of prion formation.The [URE3] phenotype of Saccharomyces cerevisiae arises because of conversion of the Ure2 protein to an aggregated propagatable prion state (1, 2). Ure2p contains two regions: a poorly structured N-terminal region and a compactly folded C-terminal region (3, 4). The N-terminal region is rich in Asn and Gln residues, is highly flexible, and is without any detectable ordered secondary structure (46). This region is necessary and sufficient for prion behavior in vivo (2) and amyloid-forming capacity in vitro (5, 7), so it is referred to as the prion domain (PrD).2 The C-terminal region has a fold similar to the glutathione S-transferase superfamily (8, 9) and possesses glutathione-dependent peroxidase activity (10). Upon fibril formation, the N-terminal region undergoes a significant conformational change from an unfolded to a thermally resistant conformation (11), whereas the glutathione S-transferase-like C-terminal domain retains its enzymatic activity, suggesting that little conformational change occurs (10, 12). Ure2p fibrils show various morphologies, including variations in thickness and the presence or absence of a periodic twist (1316). The overall structure of the fibrils imaged by cryoelectron microscopy suggests that the intact fibrils contain a 4-nm amyloid filament backbone surrounded by C-terminal globular domains (17).It is widely accepted that disulfide bonds play a critical role in maintaining protein stability (1821) and also affect the process of protein folding by influencing the folding pathway (2225). A recent study shows that the presence of a disulfide bond in a protein can markedly accelerate the folding process (26). Therefore, a disulfide bond is a useful tool to study protein folding. In the study of prion and other amyloid-related proteins, cysteine scanning has been widely used to study the structure of amyloid fibrils, the driving force of amyloid formation, and the plasticity of amyloid fibrils (13, 2731).Short segments from amyloid-related proteins, including IAPP (islet amyloid polypeptide), β2-microglobulin, insulin, and the amyloid-β peptide, show amyloid-forming capacity (3234). Hence, the amyloid stretch hypothesis has been proposed, which suggests that a short amino acid stretch bearing a highly amyloidogenic motif might supply most of the driving force needed to trigger the self-catalytic assembly process of a protein to form fibrils (35, 36). In support of this hypothesis, it was found that the insertion of an amyloidogenic stretch into a non-amyloid-related protein can trigger the amyloidosis of the protein (36). At the same time, the structural information obtained from microcrystals formed by amyloidogenic stretches and bearing cross-β-structure has contributed significantly to our understanding of the structure of intact fibrils at the atomic level (34, 37). However, no amyloidogenic stretches <10 amino acids have so far been identified in the yeast prion protein Ure2.In this study, we performed a cysteine scan within the N-terminal PrD of Ure2p and found a unique cysteine mutant (R17C) that eliminates the lag phase of the Ure2p fibril assembly reaction upon the addition of oxidizing agents. Furthermore, we identified a 4-residue region adjacent to Arg17 as a potential amyloid stretch in Ure2p.  相似文献   

13.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

14.
In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as ∼60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule assembly. Upon dephosphorylation, the PHF-tau migrates as ∼50–60-kDa bands on SDS-gels in a manner similar to tau that is isolated from normal brain and promotes microtubule assembly. The site(s) that inhibits microtubule assembly-promoting activity when phosphorylated in the diseased brain is not known. In this study, when tau was phosphorylated by Cdk5 in vitro, its mobility shifted from ∼60-kDa bands to ∼64- and 68-kDa bands in a time-dependent manner. This mobility shift correlated with phosphorylation at Ser202, and Ser202 phosphorylation inhibited tau microtubule-assembly promoting activity. When several tau point mutants were analyzed, G272V, P301L, V337M, and R406W mutations associated with FTDP-17, but not nonspecific mutations S214A and S262A, promoted Ser202 phosphorylation and mobility shift to a ∼68-kDa band. Furthermore, Ser202 phosphorylation inhibited the microtubule assembly-promoting activity of FTDP-17 mutants more than of WT. Our data indicate that FTDP-17 missense mutations, by promoting phosphorylation at Ser202, inhibit the microtubule assembly-promoting activity of tau in vitro, suggesting that Ser202 phosphorylation plays a major role in the development of NFT pathology in AD and related tauopathies.Neurofibrillary tangles (NFTs)4 and senile plaques are the two characteristic neuropathological lesions found in the brains of patients suffering from Alzheimer disease (AD). The major fibrous component of NFTs are paired helical filaments (PHFs) (for reviews see Refs. 13). Initially, PHFs were found to be composed of a protein component referred to as “A68” (4). Biochemical analysis reveled that A68 is identical to the microtubule-associated protein, tau (4, 5). Some characteristic features of tau isolated from PHFs (PHF-tau) are that it is abnormally hyperphosphorylated (phosphorylated on more sites than the normal brain tau), does not bind to microtubules, and does not promote microtubule assembly in vitro. Upon dephosphorylation, PHF-tau regains its ability to bind to and promote microtubule assembly (6, 7). Tau hyperphosphorylation is suggested to cause microtubule instability and PHF formation, leading to NFT pathology in the brain (13).PHF-tau is phosphorylated on at least 21 proline-directed and non-proline-directed sites (8, 9). The individual contribution of these sites in converting tau to PHFs is not entirely clear. However, some sites are only partially phosphorylated in PHFs (8), whereas phosphorylation on specific sites inhibits the microtubule assembly-promoting activity of tau (6, 10). These observations suggest that phosphorylation on a few sites may be responsible and sufficient for causing tau dysfunction in AD.Tau purified from the human brain migrates as ∼50–60-kDa bands on SDS-gel due to the presence of six isoforms that are phosphorylated to different extents (2). PHF-tau isolated from AD brain, on the other hand, displays ∼60-, 64-, and 68 kDa-bands on an SDS-gel (4, 5, 11). Studies have shown that ∼64- and 68-kDa tau bands (the authors have described the ∼68-kDa tau band as an ∼69-kDa band in these studies) are present only in brain areas affected by NFT degeneration (12, 13). Their amount is correlated with the NFT densities at the affected brain regions. Moreover, the increase in the amount of ∼64- and 68-kDa band tau in the brain correlated with a decline in the intellectual status of the patient. The ∼64- and 68-kDa tau bands were suggested to be the pathological marker of AD (12, 13). Biochemical analyses determined that ∼64- and 68-kDa bands are hyperphosphorylated tau, which upon dephosphorylation, migrated as normal tau on SDS-gel (4, 5, 11). Tau sites involved in the tau mobility shift to ∼64- and 68-kDa bands were suggested to have a role in AD pathology (12, 13). It is not known whether phosphorylation at all 21 PHF-sites is required for the tau mobility shift in AD. However, in vitro the tau mobility shift on SDS-gel is sensitive to phosphorylation only on some sites (6, 14). It is therefore possible that in the AD brain, phosphorylation on some sites also causes a tau mobility shift. Identification of such sites will significantly enhance our knowledge of how NFT pathology develops in the brain.PHFs are also the major component of NFTs found in the brains of patients suffering from a group of neurodegenerative disorders collectively called tauopathies (2, 11). These disorders include frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), corticobasal degeneration, progressive supranuclear palsy, and Pick disease. Each PHF-tau isolated from autopsied brains of patients suffering from various tauopathies is hyperphosphorylated, displays ∼60-, 64-, and 68-kDa bands on SDS-gel, and is incapable of binding to microtubules. Upon dephosphorylation, the above referenced PHF-tau migrates as a normal tau on SDS-gel, binds to microtubules, and promotes microtubule assembly (2, 11). These observations suggest that the mechanisms of NFT pathology in various tauopathies may be similar and the phosphorylation-dependent mobility shift of tau on SDS-gel may be an indicator of the disease. The tau gene is mutated in familial FTDP-17, and these mutations accelerate NFT pathology in the brain (1518). Understanding how FTDP-17 mutations promote tau phosphorylation can provide a better understanding of how NFT pathology develops in AD and various tauopathies. However, when expressed in CHO cells, G272V, R406W, V337M, and P301L tau mutations reduce tau phosphorylation (19, 20). In COS cells, although G272V, P301L, and V337M mutations do not show any significant affect, the R406W mutation caused a reduction in tau phosphorylation (21, 22). When expressed in SH-SY5Y cells subsequently differentiated into neurons, the R406W, P301L, and V337M mutations reduce tau phosphorylation (23). In contrast, in hippocampal neurons, R406W increases tau phosphorylation (24). When phosphorylated by recombinant GSK3β in vitro, the P301L and V337M mutations do not have any effect, and the R406W mutation inhibits phosphorylation (25). However, when incubated with rat brain extract, all of the G272V, P301L, V337M, and R406W mutations stimulate tau phosphorylation (26). The mechanism by which FTDP-17 mutations promote tau phosphorylation leading to development of NFT pathology has remained unclear.Cyclin-dependent protein kinase 5 (Cdk5) is one of the major kinases that phosphorylates tau in the brain (27, 28). In this study, to determine how FTDP-17 missense mutations affect tau phosphorylation, we phosphorylated four FTDP-17 tau mutants (G272V, P301L, V337M, and R406W) by Cdk5. We have found that phosphorylation of tau by Cdk5 causes a tau mobility shift to ∼64- and 68 kDa-bands. Although the mobility shift to a ∼64-kDa band is achieved by phosphorylation at Ser396/404 or Ser202, the mobility shift to a 68-kDa band occurs only in response to phosphorylation at Ser202. We show that in vitro, FTDP-17 missense mutations, by promoting phosphorylation at Ser202, enhance the mobility shift to ∼64- and 68-kDa bands and inhibit the microtubule assembly-promoting activity of tau. Our data suggest that Ser202 phosphorylation is the major event leading to NFT pathology in AD and related tauopathies.  相似文献   

15.
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.Homologous recombination (HR)2 is one of the primary mechanisms by which cells repair dsDNA breaks (DSBs) and ssDNA gaps (SSGs), and is important for restart of stalled DNA replication (1). HR is initiated when RecA-like recombinases bind to ssDNA forming an extended nucleoprotein filament, referred to as a presynaptic complex (2). The potential for genetic rearrangements dictates that HR initiation is tightly regulated at multiple levels (1). During replication, the ssDNA-binding protein (SSB) protects transiently unwound DNA chains, preventing interactions with recombinases. Following DNA damage, recombination mediator proteins (RMPs) initiate HR by facilitating the formation of the recombinase filaments with ssDNA, while removing SSB (3, 4). Mutations in human proteins involved in HR initiation are linked to cancer predisposition, chromosome instability, UV sensitivity, and premature aging diseases (48). To date, little is known about the mechanism by which RMPs regulate the formation of the recombinase filaments on the SSB-protected ssDNA.In Escherichia coli, there are two major recombination pathways, RecBCD and RecF (9, 10). A helicase/nuclease RecBCD complex processes DSBs and recruits RecA on ssDNA in a sequence-specific manner (1113). The principle players in the RecF pathway are the RecF, RecO, and RecR proteins, which form an epistatic group that is important for SSG repair, for restart of stalled DNA replication, and under specific conditions, can also process DSBs (1420). Homologs of RecF, -O, and -R are present in the majority of known bacteria (21), including Deinococcus radiodurans, extremely radiation-resistant bacteria that lacks the RecBCD pathway, yet is capable of repairing thousands of DSBs (22, 23). In addition, the sequence or functional homologs of RecF pathway proteins are involved in similar pathways in eukaryotes that include among others WRN, BLM, RAD52, and BRCA2 proteins (48).The involvement of all three RecF, -O, and -R proteins in HR initiation is well documented by genetic and cellular approaches (18, 2430), yet their biochemical functions in the initiation process remain unclear, particularly with respect to RecF. RecO and RecR proteins are sufficient to promote formation of the RecA filament on SSB-bound ssDNA in vitro (27). The UV-sensitive phenotype of recF mutants can be suppressed by RecOR overexpression, suggesting that RecF may direct the RMP complex to DNA-damaged regions where HR initiation is required (31). In agreement with this hypothesis, RecF dramatically increases the efficiency of the RecA loading at ds/ssDNA junctions with a 3′ ssDNA extension under specific conditions (32). RecF and RecR proteins also prevent the RecA filaments from extending into dsDNA regions adjacent to SSGs (33). These data suggest that RecF may directly recognize an ss/dsDNA junction structure (34). However, DNA binding experiments have not provided clear evidence to support such a hypothesis (11).The targeting promoted by RecF may also occur through more complex processes. RecF shares a high structural similarity with the head domain of Rad50, an ABC-type ATPase that recognizes DSBs and initiates repair in archaea and eukaryotes (35). All known ABC-type ATPases function as oligomeric complexes in which a sequence of inter- and intra-molecular interactions is triggered by the ATP-dependent dimerization and the dimer-dependent ATP hydrolysis (3639). RecF is also an ATP-dependent DNA-binding protein and a weak DNA-dependent ATPase (11, 40). RecF forms an ATP-dependent dimer and all three conserved motifs (Walker A, Walker B, and “signature”) of RecF are important for ATP-dependent dimerization, ATP hydrolysis, and functional resistance to DNA damage (35). Thus, RecF may function in recombination initiation through a complex pathway of protein-protein and DNA-protein interactions regulated by ATP-dependent RecF dimerization.In this report, we present a detailed characterization of the RecF dimerization, and its role in the RecF interaction with various DNA substrates, with RecR, and in ATP hydrolysis. Our data outline the following key findings. First, RecF interacts with DNA as a dimer. Second, neither RecF alone nor the RecFR complex preferentially binds the ss/dsDNA junction. Finally, RecR changes the ATPase activity and the DNA binding of RecF by destabilizing the interaction with ssDNA, and greatly enhancing the interaction with dsDNA. Our results suggest that the specificity of RecF for the boundaries of SSGs is likely to result from a sequence of protein-protein interaction events rather than a simple RecF ss/dsDNA binding, underlining a highly regulated mechanism of the HR initiation by the RecFOR proteins.  相似文献   

16.
17.
NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.NADPH-cytochrome P450 oxidoreductase (CYPOR)4 is a ∼78-kDa, multidomain, microsomal diflavin protein that shuttles electrons from NADPH → FAD → FMN to members of the ubiquitous cytochrome P450 superfamily (1, 2). In humans, the cytochromes P450 (cyt P450) are one of the most important families of proteins involved in the biosynthesis and degradation of a vast number of endogenous compounds and the detoxification and biodegradation of most foreign compounds. CYPOR also donates electrons to heme oxygenase (3), cytochrome b5 (4), and cytochrome c (5).The FAD receives a hydride anion from the obligate two electron donor NADPH and passes the electrons one at a time to FMN. The FMN then donates electrons to the redox partners of CYPOR, again one electron at a time. Cyt P450 accepts electrons at two different steps in its complex reaction cycle. Ferric cyt P450 is reduced to the ferrous protein, and oxyferrous cyt P450 receives the second of the two electrons to form the peroxo (Fe+3OO)2- cyt P450 intermediate (6). In vivo, CYPOR cycles between the one- and three-electron reduced forms (7, 8). Although the one-electron reduced form is an air-stable, neutral blue semiquinone (FMNox/sq, -110 mV), it is the FMN hydroquinone (FMNsq/hq, -270 mV), not the semiquinone, that donates an electron to its redox partners (811). CYPOR is the prototype of the mammalian diflavin-containing enzyme family, which includes nitric-oxide synthase (12), methionine synthase reductase (13, 14), and a novel reductase expressed in the cytoplasm of certain cancer cells (15). CYPOR is also a target for anticancer therapy, because it reductively activates anticancer prodrugs (16).CYPOR consists of an N-terminal single α-helical transmembrane anchor (∼6 kDa) responsible for its localization to the endoplasmic reticulum and the soluble cytosolic portion (∼66 kDa) capable of reducing cytochrome c. Crystal structures of the soluble form of the wild-type and several mutant CYPORs are available (17, 18). The first ∼170 amino acids of the soluble domain are highly homologous to flavodoxin and bind FMN (FMN domain), whereas the C-terminal portion of the soluble protein consists of a FAD- and NADPH-binding domain with sequence and structural similarity to ferredoxin-NADP+ oxidoreductase (FAD domain). A connecting domain, possessing a unique sequence and structure, joins the FMN and FAD domains and is partly responsible for the relative orientation of the FMN and FAD domains. In the crystal structure, a convex anionic surface surrounds FMN. In the wild-type crystal structure, the two flavin isoalloxazine rings are in van der Waals contact, poised for efficient interflavin electron transfer (17). Based on the juxtaposition of the two flavins, an extrinsic electron transfer rate of ∼1010 s-1 is predicted (19). However, the experimentally observed electron transfer rate between the two flavins is 30–55 s-1 (20, 21). This modest rate and slowing of electron transfer in a viscous solvent (75% glycerol) suggest that interflavin electron transfer is likely conformationally gated. Moreover, the “closed” crystal structure, in which the flavins are in contact, is difficult to reconcile with mutagenesis studies that indicate the acidic amino acid residues on the surface near FMN are involved in interacting with cyt P450 (22). The first structural insight into how cyt P450 might interact with the FMN domain of CYPOR was provided by the crystal structure of a complex between the heme and FMN-containing domains of cyt P450 BM3 (23). In this complex, the methyl groups of FMN are oriented toward the heme on the proximal surface of cyt P450 BM3. Considered together, these three observations, the slow interflavin electron transfer, the mutagenesis data, and the structure of the complex between the heme and FMN domains of cyt P450 BM3, suggest that CYPOR will undergo a large conformational rearrangement in the course of shuttling electrons from NADPH to cyt P450. In addition, crystal structures of various CYPOR variants indicate that the FMN domain is highly mobile with respect to the rest of the molecule (18).Consideration of how the reductase would undergo a reorientation to interact with its redox partners led us to hypothesize the existence of a structural element in the reductase that would regulate the conformational changes and the relative dynamic motion of the domains. Our attention focused on the hinge region between the FMN and the connecting domain, because it is often disordered and highly flexible in the crystal structure (supplemental Fig. S1). The length and sequence of the hinge have been altered by site-directed mutagenesis, and the effects of the mutations on the catalytic properties of each mutant have been determined. The results demonstrate that lengthening the linker or altering its sequence do not modify the properties of CYPOR. In contrast, deletion of four amino acids markedly disrupts electron transfer from FAD to FMN, whereas the ability of the FMN domain to donate electrons to cyt P450 remains intact. The hinge deletion variant has been crystallized in three “open” conformations capable of interacting with cyt P450.  相似文献   

18.
The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because of mutations in the ChEL domain that block protein export from the endoplasmic reticulum. We hypothesize that Tg forms homodimers through noncovalent interactions involving two predicted α-helices in each ChEL domain that are homologous to the dimerization helices of acetylcholinesterase. This has been explored through selective epitope tagging of dimerization partners and by inserting an extra, unpaired Cys residue to create an opportunity for intermolecular disulfide pairing. We show that the ChEL domain is necessary and sufficient for Tg dimerization; specifically, the isolated ChEL domain can dimerize with full-length Tg or with itself. Insertion of an N-linked glycan into the putative upstream dimerization helix inhibits homodimerization of the isolated ChEL domain. However, interestingly, co-expression of upstream Tg domains, either in cis or in trans, overrides the dimerization defect of such a mutant. Thus, although the ChEL domain provides a nidus for Tg dimerization, interactions of upstream Tg regions with the ChEL domain actively stabilizes the Tg dimer complex for intracellular transport.The synthesis of thyroid hormone in the thyroid gland requires secretion of thyroglobulin (Tg)2 to the apical luminal cavity of thyroid follicles (1). Once secreted, Tg is iodinated via the activity of thyroid peroxidase (2). A coupling reaction involving a quinol-ether linkage especially engages di-iodinated tyrosyl residues 5 and 130 to form thyroxine within the amino-terminal portion of the Tg polypeptide (3, 4). Preferential iodination of Tg hormonogenic sites is dependent not on the specificity of the peroxidase (5) but upon the native structure of Tg (6, 7). To date, no other thyroidal proteins have been shown to effectively substitute in this role for Tg.The first 80% of the primary structure of Tg (full-length murine Tg: 2,746 amino acids) involves three regions called I-II-III comprised of disulfide-rich repeat domains held together by intradomain disulfide bonds (8, 9). The final 581 amino acids of Tg are strongly homologous to acetylcholinesterase (1012). Rate-limiting steps in the overall process of Tg secretion involve its structural maturation within the endoplasmic reticulum (ER) (13). Interactions between regions I-II-III and the cholinesterase-like (ChEL) domain have recently been suggested to be important in this process, with ChEL functioning as an intramolecular chaperone and escort for I-II-III (14). In addition, Tg conformational maturation culminates in Tg homodimerization (15, 16) with progression to a cylindrical, and ultimately, a compact ovoid structure (1719).In human congenital hypothyroidism with deficient Tg, the ChEL domain is a commonly affected site of mutation, including the recently described A2215D (20, 21), R2223H (22), G2300D, R2317Q (23), G2355V, G2356R, and the skipping of exon 45 (which normally encodes 36 amino acids), as well as the Q2638stop mutant (24) (in addition to polymorphisms including P2213L, W2482R, and R2511Q that may be associated with thyroid overgrowth (25)). As best as is currently known, all of the congenital hypothyroidism-inducing Tg mutants are defective for intracellular transport (26). A homozygous G2300R mutation (equivalent to residue 2,298 of mouse Tg) in the ChEL domain is responsible for congenital hypothyroidism in rdw rats (27, 28), whereas we identified the Tg-L2263P point mutation as the cause of hypothyroidism in the cog mouse (29). Such mutations perturb intradomain structure (30), and interestingly, block homodimerization (31). Acquisition of quaternary structure has long been thought to be required for efficient export from the ER (32) as exemplified by authentic acetylcholinesterase (33, 34) in which dimerization enhances protein stability and export (35).Tg comprised only of regions I-II-III (truncated to lack the ChEL domain) is blocked within the ER (30), whereas a secretory version of the isolated ChEL domain of Tg devoid of I-II-III undergoes rapid and efficient intracellular transport and secretion (14). A striking homology positions two predicted α-helices of the ChEL domain to the identical relative positions of the dimerization helices in acetylcholinesterase. This raises the possibility that ChEL may serve as a homodimerization domain for Tg, providing a critical function in maturation for Tg transport to the site of thyroid hormone synthesis (1).In this study, we provide unequivocal evidence for homodimerization of the ChEL domain and “hetero”-dimerization of that domain with full-length Tg, and we provide significant evidence that the predicted ChEL dimerization helices provide a nidus for Tg assembly. On the other hand, our data also suggest that upstream Tg regions known to interact with ChEL (14) actively stabilize the Tg dimer complex. Together, I-II-III and ChEL provide unique contributions to the process of intracellular transport of Tg through the secretory pathway.  相似文献   

19.
The Tob/BTG family is a group of antiproliferative proteins containing two highly homologous regions, Box A and Box B. These proteins all associate with CCR4-associated factor 1 (Caf1), which belongs to the ribonuclease D (RNase D) family of deadenylases and is a component of the CCR4-Not deadenylase complex. Here we determined the crystal structure of the complex of the N-terminal region of Tob and human Caf1 (hCaf1). Tob exhibited a novel fold, whereas hCaf1 most closely resembled the catalytic domain of yeast Pop2 and human poly(A)-specific ribonuclease. Interestingly, the association of hCaf1 was mediated by both Box A and Box B of Tob. Cell growth assays using both wild-type and mutant proteins revealed that deadenylase activity of Caf1 is not critical but complex formation is crucial to cell growth inhibition. Caf1 tethers Tob to the CCR4-Not deadenylase complex, and thereby Tob gathers several factors at its C-terminal region, such as poly(A)-binding proteins, to exert antiproliferative activity.The Tob/BTG family (also called the APRO family) is a group of antiproliferative proteins (1, 2) consisting of Tob (3), Tob2 (4), BTG1 (5), BTG2/Tis21/PC3 (6-8), PC3B (9), and ANA/BTG3 (10, 11) in mammalian cells, AF177464 in Drosophila, and FOG-3 in Caenorhabditis elegans (12). A recent genome project reported that the BTG/Tob family protein had already existed in Choanoflagellida Monosiga brevicollis MX1. The N-terminal region of the Tob/BTG family proteins is conserved and includes two highly homologous regions, Box A and Box B. The Tob/BTG family proteins are involved in cell cycle regulation in a variety of cells such as T lymphocytes, fibroblasts, epithelial cells, and germ cells. In Tob-deficient mice, the incidence of liver tumors is higher than in wild-type mice. Furthermore, because the levels of tob expression are often repressed in human lung cancers, suppression of its expression is thought to contribute to tumor progression (13).The antiproliferative activities of the Tob/BTG family proteins are due to their association with target proteins in cells. For example, Tob associates with SMAD family proteins and acts as a negative regulator of SMAD signaling. In osteoblasts, this negative regulation occurs via association with SMAD 1, 5, 6, and 8 (14, 15), and via association with SMAD 2 and 4 in anergic quiescent T cells (16). Tob/BTG family proteins also bind to protein arginine methyltransferase, which regulates chromatin assembly by histone methylation (17). Much evidence has been accumulated to suggest that CCR4-associated factor 1 (Caf1),2 also known as Cnot7 and involved in the CCR4-Not deadenylase complex, is a common binding partner of the Tob/BTG family proteins (4, 18-21). To reveal the functions of Caf1 in vivo, caf1-/- mice have been generated in two groups. Male caf1-deficient mice are infertile because of a malfunction of the testicular somatic cells that leads to a defect in spermatogenesis (22, 23). Genetic analysis of the nematode C. elegans also suggests that FOG3 (Tob orthologue) interacts with CCF1, the C. elegans homologue of Caf1, and that this interaction is essential for germ cells to initiate spermatogenesis (24).Mouse and human Caf1 (mCaf1 and hCaf1) were found as homologues of yeast Pop2, a component of the CCR4-Not complex (18, 25). Yeast Pop2 displays weak RNase activity but enhances the deadenylation of the poly(A) tail of mRNA by the CCR4-Not deadenylase complex (26-29). The primary structure of mammalian Caf1 is related to that of the ribonuclease D (RNase D) family, and all of the active site residues are well conserved (30). Indeed, both mCaf1 and hCaf1 have deadenylase activity (31-33).Although the relationship between cell cycle repression and poly(A) deadenylation is not well understood, mRNA degradation and synthesis are major events in maintaining the cell cycle (34). The mRNAs in a eukaryotic cell have a wide range of half-lives. Degradation of mRNA is initiated by shortening of the poly(A) tail. Thereafter, the 5′-cap structure is removed and the remaining portion of the mRNA is rapidly degraded. The degradation of eukaryotic mRNAs is regulated precisely at each stage of the cell cycle. Tob was reported to associate with inducible poly(A)-binding protein (iPABP) and to abrogate the translation of interleukin-2 mRNA in vitro (35). Recent reports also showed that Tob and BTG2 interact with the CCR4-Not deadenylase complex using the Tob/BTG2 domain and the cytoplasmic poly(A)-binding protein (PABPC1) using the C-terminal tail and enhanced mRNA degradation (36-38).To help elucidate the relationship between the antiproliferative activity of Tob and the degradation of the poly(A) tail, we determined the crystal structure of the Tob-hCaf1 complex. We found that hCaf1 has a structure similar to yeast Pop2 and human PARN of deadenylases, exonuclease I, and the Klenow fragment of DNA polymerase I from Escherichia coli. In contrast, Tob has a novel structure. Specifically, Box A and Box B mediate the interaction between Tob and hCaf1. Cell growth assays using the wild and mutant proteins, together with the structural studies, revealed that the complex formation is crucial to cell growth inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号