共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viperin is an evolutionarily conserved interferon-inducible protein that
localizes to the endoplasmic reticulum (ER) and inhibits a number of DNA and
RNA viruses. In this study, we report that viperin specifically localizes to
the cytoplasmic face of the ER and that an amphipathic α-helix at its N
terminus is necessary for the ER localization of viperin and sufficient to
promote ER localization of a reporter protein, dsRed. Overexpression of intact
viperin but not the amphipathic α-helix fused to dsRed induced
crystalloid ER. Consistent with other proteins that induce crystalloid ER,
viperin self-associates, and it does so independently of the amphipathic
α-helix. Viperin expression also affected the transport of soluble but
not membrane-associated proteins. Expression of intact viperin or an
N-terminal α-helix-dsRed fusion protein significantly reduced secretion
of soluble alkaline phosphatase and reduced its rate of ER-to-Golgi
trafficking. Similarly, viperin expression inhibited bulk protein secretion
and secretion of endogenous α1-antitrypsin and serum albumin
from HepG2 cells. Converting hydrophobic residues in the N-terminal
α-helix to acidic residues partially or completely restored normal
transport of soluble alkaline phosphatase, suggesting that the extended
amphipathic nature of the N-terminal α-helical domain is essential for
inhibiting protein secretion.Type I interferons are the first line of defense against viral infections.
The significance of the interferon pathway is illustrated by the
susceptibility of interferon signaling mutants to infection and by viral
mechanisms that counteract this pathway
(1,
2). Although many genes are
induced upon interferon stimulation, very few of these genes have been
functionally characterized. Viperin is highly induced by both Type I and II
interferons and has a broad range of antiviral activity, inhibiting DNA
viruses, notably human cytomegalovirus
(3); RNA viruses such as
influenza, hepatitis C virus
(HCV),2 and
alphaviruses
(4-6);
and retroviruses such as human immunodeficiency virus
(7). Upon expression, viperin
localizes to the endoplasmic reticulum (ER), where it interacts with
farnesyl-diphosphate synthase, an enzyme involved in lipid biosynthesis. This
interaction appears to result in the disruption of lipid raft microdomains and
prevention of influenza virus from budding from the plasma membrane
(4).Although recent studies have explored the antiviral functions of viperin,
the general biochemical properties of this protein remain largely undefined.
Viperin is highly conserved across both mammals and lower vertebrates and
shares homology with the MoaA family of “radical
S-adenosylmethionine” enzymes that bind Fe-S clusters
(3,
8). In addition to a putative
Fe-S cluster-binding domain, viperin has a 42-amino acid residue N-terminal
amphipathic α-helix, and similar domains in other proteins have been
shown to bind membranes and induce membrane curvature
(9,
10).In this study, we examined the role of the viperin N-terminal
α-helical domain in both cellular localization and ER membrane
morphology and analyzed the biochemical properties of viperin. We discovered
that viperin forms dimers and induces a tightly ordered, visually striking
array of ER membranes, known as crystalloid
ER(11-13),
upon overexpression. In addition, viperin expression impedes the secretion of
a variety of soluble proteins. Although the N-terminal amphipathic
α-helix is not sufficient to induce crystalloid ER formation, it is both
necessary and sufficient to mediate ER localization and to inhibit protein
secretion. 相似文献
3.
4.
Lisa Placanica Leonid Tarassishin Guangli Yang Erica Peethumnongsin Seong-Hun Kim Hui Zheng Sangram S. Sisodia Yue-Ming Li 《The Journal of biological chemistry》2009,284(5):2967-2977
γ-Secretase is known to play a pivotal role in the pathogenesis of
Alzheimer disease through production of amyloidogenic Aβ42 peptides.
Early onset familial Alzheimer disease mutations in presenilin (PS), the
catalytic core of γ-secretase, invariably increase the
Aβ42:Aβ40 ratio. However, the mechanism by which these mutations
affect γ-secretase complex formation and cleavage specificity is poorly
understood. We show that our in vitro assay system recapitulates the
effect of PS1 mutations on the Aβ42:Aβ40 ratio observed in cell and
animal models. We have developed a series of small molecule affinity probes
that allow us to characterize active γ-secretase complexes. Furthermore
we reveal that the equilibrium of PS1- and PS2-containing active complexes is
dynamic and altered by overexpression of Pen2 or PS1 mutants and that
formation of PS2 complexes is positively correlated with increased
Aβ42:Aβ40 ratios. These data suggest that perturbations to
γ-secretase complex equilibrium can have a profound effect on enzyme
activity and that increased PS2 complexes along with mutated PS1 complexes
contribute to an increased Aβ42:Aβ40 ratio.β-Amyloid
(Aβ)5 peptides
are believed to play a causative role in Alzheimer disease (AD). Aβ
peptides are generated from the processing of the amyloid precursor protein
(APP) by two proteases, β-secretase and γ-secretase. Although
γ-secretase generates heterogenous Aβ peptides ranging from 37 to
46 amino acids in length, significant work has focused mainly on the Aβ40
and Aβ42 peptides that are the major constituents of amyloid plaques.
γ-Secretase is a multisubunit membrane aspartyl protease comprised of at
least four known subunits: presenilin (PS), nicastrin (Nct), anterior
pharynx-defective (Aph), and presenilin enhancer 2 (Pen2). Presenilin is
thought to contain the catalytic core of the complex
(1–4),
whereas Aph and Nct play critical roles in the assembly, trafficking, and
stability of γ-secretase as well as substrate recognition
(5,
6). Lastly Pen2 facilitates the
endoproteolysis of PS into its N-terminal (NTF) and C-terminal (CTF) fragments
thereby yielding a catalytically competent enzyme
(5,
7–10).
All four proteins (PS, Nct, Aph1, and Pen2) are obligatory for
γ-secretase activity in cell and animal models
(11,
12). There are two homologs of
PS, PS1 and PS2, and three isoforms of Aph1, Aph1aS, Aph1aL, and Aph1b. At
least six active γ-secretase complexes have been reported (two
presenilins × three Aph1s)
(13,
14). The sum of apparent
molecular masses of the four proteins (PS1-NTF/CTF ≈ 53 kDa, Nct ≈ 120
kDa, Aph1 ≈ 30 kDa, and Pen2 ≈ 10kDa) is ∼200 kDa. However, active
γ-secretase complexes of varying sizes, ranging from 250 to 2000 kDa,
have been reported
(15–19).
Recently a study suggested that the γ-secretase complex contains only
one of each subunit (20).
Collectively these studies suggest that a four-protein complex around
200–250 kDa may be the minimal functional γ-secretase unit with
additional cofactors and/or varying stoichiometry of subunits existing in the
high molecular weight γ-secretase complexes. CD147 and TMP21 have been
found to be associated with the γ-secretase complex
(21,
22); however, their role in
the regulation of γ-secretase has been controversial
(23,
24).Mutations of PS1 or PS2 are associated with familial early onset AD (FAD),
although it is debatable whether these familial PS mutations act as
“gain or loss of function” alterations in regard to
γ-secretase activity
(25–27).
Regardless the overall outcome of these mutations is an increased ratio of
Aβ42:Aβ40. Clearly these mutations differentially affect
γ-secretase activity for the production of Aβ40 and Aβ42.
Despite intensive studies of Aβ peptides and γ-secretase, the
molecular mechanism controlling the specificity of γ-secretase activity
for Aβ40 and Aβ42 production has not been resolved. It has been
found that PS1 mutations affect the formation of γ-secretase complexes
(28). However, the precise
mechanism by which individual subunits alter the dynamics of γ-secretase
complex formation and activity is largely unresolved. A better mechanistic
understanding of γ-secretase activity associated with FAD mutations has
been hindered by the lack of suitable assays and probes that are necessary to
recapitulate the effect of these mutations seen in cell models and to
characterize the active γ-secretase complex.In our present studies, we have determined the overall effect of Pen2 and
PS1 expression on the dynamics of PS1- and PS2-containing complexes and their
association with γ-secretase activity. Using newly developed
biotinylated small molecular probes and activity assays, we revealed that
expression of Pen2 or PS1 FAD mutants markedly shifts the equilibrium of
PS1-containing active complexes to that of PS2-containing complexes and
results in an overall increase in the Aβ42:Aβ40 ratio in both stable
cell lines and animal models. Our studies indicate that perturbations to the
equilibrium of active γ-secretase complexes by an individual subunit can
greatly affect the activity of the enzyme. Moreover they serve as further
evidence that there are multiple and distinct γ-secretase complexes that
can exist within the same cells and that their equilibrium is dynamic.
Additionally the affinity probes developed here will facilitate further study
of the expression and composition of endogenous active γ-secretase from
a variety of model systems. 相似文献
5.
6.
7.
8.
Jason D. Hoffert Chung-Lin Chou Mark A. Knepper 《The Journal of biological chemistry》2009,284(22):14683-14687
Vasopressin controls renal water excretion largely through actions to
regulate the water channel aquaporin-2 in collecting duct principal cells. Our
knowledge of the mechanisms involved has increased markedly in recent years
with the advent of methods for large-scale systems-level profiling such as
protein mass spectrometry, yeast two-hybrid analysis, and oligonucleotide
microarrays. Here we review this progress.Regulation of water excretion by the kidney is one of the most visible
aspects of everyday physiology. An outdoor tennis game on a hot summer day can
result in substantial water losses by sweating, and the kidneys respond by
reducing water excretion. In contrast, excessive intake of water, a frequent
occurrence in everyday life, results in excretion of copious amounts of clear
urine. These responses serve to exact tight control on the tonicity of body
fluids, maintaining serum osmolality in the range of 290–294 mosmol/kg
of H2O through the regulated return of water from the pro-urine in
the renal collecting ducts to the bloodstream.The importance of this process is highlighted when the regulation fails.
For example, polyuria (rapid uncontrolled excretion of water) is a sometimes
devastating consequence of lithium therapy for bipolar disorder. On the other
side of the coin are water balance disorders that result from excessive renal
water retention causing systemic hypo-osmolality or hyponatremia. Hyponatremia
due to excessive water retention can be seen with severe congestive heart
failure, hepatic cirrhosis, and the syndrome of inappropriate
antidiuresis.The chief regulator of water excretion is the peptide hormone
AVP,2 whereas the
chief molecular target for regulation is the water channel AQP2. In this
minireview, we describe new progress in the understanding of the molecular
mechanisms involved in regulation of AQP2 by AVP in collecting duct cells,
with emphasis on new information derived from “systems-level”
approaches involving large-scale profiling and screening techniques such as
oligonucleotide arrays, protein mass spectrometry, and yeast two-hybrid
analysis. Most of the progress with these techniques is in the identification
of individual molecules involved in AVP signaling and binding interactions
with AQP2. Additional related issues are addressed in several recent reviews
(1–4). 相似文献
9.
10.
11.
12.
13.
14.
Elsa Perrody Anne-Marie Cirinesi Carine Desplats France Keppel Fran?oise Schwager Samuel Tranier Costa Georgopoulos Pierre Genevaux 《PLoS genetics》2012,8(11)
The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70''s ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed. 相似文献
15.
16.
Yongmei Pu Susan H. Garfield Noemi Kedei Peter M. Blumberg 《The Journal of biological chemistry》2009,284(2):1302-1312
Classic and novel protein kinase C (PKC) isozymes contain two zinc finger
motifs, designated “C1a” and “C1b” domains, which
constitute the recognition modules for the second messenger diacylglycerol
(DAG) or the phorbol esters. However, the individual contributions of these
tandem C1 domains to PKC function and, reciprocally, the influence of protein
context on their function remain uncertain. In the present study, we prepared
PKCδ constructs in which the individual C1a and C1b domains were
deleted, swapped, or substituted for one another to explore these issues. As
isolated fragments, both the δC1a and δC1b domains potently bound
phorbol esters, but the binding of [3H]phorbol 12,13-dibutyrate
([3H]PDBu) by the δC1a domain depended much more on the
presence of phosphatidylserine than did that of the δC1b domain. In
intact PKCδ, the δC1b domain played the dominant role in
[3H]PDBu binding, membrane translocation, and down-regulation. A
contribution from the δC1a domain was nonetheless evident, as shown by
retention of [3H]PDBu binding at reduced affinity, by increased
[3H]PDBu affinity upon expression of a second δC1a domain
substituting for the δC1b domain, and by loss of persistent plasma
membrane translocation for PKCδ expressing only the δC1b domain,
but its contribution was less than predicted from the activity of the isolated
domain. Switching the position of the δC1b domain to the normal position
of the δC1a domain (or vice versa) had no apparent effect on the
response to phorbol esters, suggesting that the specific position of the C1
domain within PKCδ was not the primary determinant of its activity.One of the essential steps for protein kinase C
(PKC)2 activation is
its translocation from the cytosol to the membranes. For conventional
(α, βI, βII, and γ) and novel (δ, ε, η,
and θ) PKCs, this translocation is driven by interaction with the
lipophilic second messenger sn-1,2-diacylglycerol (DAG), generated
from phosphatidylinositol 4,5-bisphosphate upon the activation of
receptor-coupled phospholipase C or indirectly from phosphatidylcholine via
phospholipase D (1). A pair of
zinc finger structures in the regulatory domain of the PKCs, the
“C1” domains, are responsible for the recognition of the DAG
signal. The DAG-C1 domain-membrane interaction is coupled to a conformational
change in PKC, both causing the release of the pseudosubstrate domain from the
catalytic site to activate the enzyme and triggering the translocation to the
membrane (2). By regulating
access to substrates, PKC translocation complements the intrinsic enzymatic
specificity of PKC to determine its substrate profile.The C1 domain is a highly conserved cysteine-rich motif (∼50 amino
acids), which was first identified in PKC as the interaction site for DAG or
phorbol esters (3). It
possesses a globular structure with a hydrophilic binding cleft at one end
surrounded by hydrophobic residues. Binding of DAG or phorbol esters to the C1
domain caps the hydrophilic cleft and forms a continuous hydrophobic surface
favoring the interaction or penetration of the C1 domain into the membrane
(4). In addition to the novel
and classic PKCs, six other families of proteins have also been identified,
some of whose members possess DAG/phorbol ester-responsive C1 domains. These
are the protein kinase D (5),
the chimaerin (6), the munc-13
(7), the RasGRP (guanyl
nucleotide exchange factors for Ras and Rap1)
(8), the DAG kinase
(9), and the recently
characterized MRCK (myotonic dystrophy kinase-related
Cdc42-binding kinase) families
(10). Of these C1
domain-containing proteins, the PKCs have been studied most extensively and
are important therapeutic targets
(11). Among the drug
candidates in clinical trials that target PKC, a number such as bryostatin 1
and PEP005 are directed at the C1 domains of PKC rather than at its catalytic
site.Both the classic and novel PKCs contain in their N-terminal regulatory
region tandem C1 domains, C1a and C1b, which bind DAG/phorbol ester
(12). Multiple studies have
sought to define the respective roles of these two C1 domains in PKC
regulation, but the issue remains unclear. Initial in vitro binding
measurements with conventional PKCs suggested that 1 mol of phorbol ester
bound per mole of PKC
(13-15).
On the other hand, Stubbs et al., using a fluorescent phorbol ester
analog, reported that PKCα bound two ligands per PKC
(16). Further, site-directed
mutagenesis of the C1a and C1b domains of intact PKCα indicated that the
C1a and C1b domains played equivalent roles for membrane translocation in
response to phorbol 12-myristate 13-acetate (PMA) and (-)octylindolactam V
(17). Likewise, deletion
studies indicated that the C1a and C1b domains of PKCγ bound PDBu
equally with high potency (3,
18). Using a functional assay
with PKCα expression in yeast, Shieh et al.
(19) deleted individual C1
domains and reported that C1a and C1b were both functional and equivalent upon
stimulation by PMA, with either deletion causing a similar reduction in
potency of response, whereas for mezerein the response depended essentially on
the C1a domain, with much weaker response if only the C1b domain was present.
Using isolated C1 domains, Irie et al.
(20) suggested that the C1a
domain of PKCα but not those of PKCβ or PKCγ bound
[3H]PDBu preferentially; different ligands showed a generally
similar pattern but with different extents of selectivity. Using synthesized
dimeric bisphorbols, Newton''s group reported
(21) that, although both C1
domains of PKCβII are oriented for potential membrane interaction, only
one C1 domain bound ligand in a physiological context.In the case of novel PKCs, many studies have been performed on PKCδ
to study the equivalency of the twin C1 domains. The P11G point mutation of
the C1a domain, which caused a 300-fold loss of binding potency in the
isolated domain (22), had
little effect on the phorbol ester-dependent translocation of PKCδ in
NIH3T3 cells, whereas the same mutation of the C1b caused a 20-fold shift in
phorbol ester potency for inducing translocation, suggesting a major role of
the C1b domain for phorbol ester binding
(23). A secondary role for the
C1a domain was suggested, however, because mutation in the C1a domain as well
as the C1b domain caused a further 7-fold shift in potency. Using the same
mutations in the C1a and C1b domains, Bögi et al.
(24) found that the binding
selectivity for the C1a and C1b domains of PKCδ appeared to be
ligand-dependent. Whereas PMA and the indole alkaloids indolactam and
octylindolactam were selectively dependent on the C1b domain, selectivity was
not observed for mezerein, the 12-deoxyphorbol 13-monoesters prostratin and
12-deoxyphorbol 13-phenylacetate, and the macrocyclic lactone bryostatin 1
(24). In in vitro
studies using isolated C1a and C1b domains of PKCδ, Cho''s group
(25) described that the two C1
domains had opposite affinities for DAG and phorbol ester; i.e. the
C1a domain showed high affinity for DAG and the C1b domain showed high
affinity for phorbol ester. No such difference in selectivity was observed by
Irie et al. (20).PKC has emerged as a promising therapeutic target both for cancer and for
other conditions, such as diabetic retinopathy or macular degeneration
(26-30).
Kinase inhibitors represent one promising approach for targeting PKC, and
enzastaurin, an inhibitor with moderate selectivity for PKCβ relative to
other PKC isoforms (but still with activity on some other non-PKC kinases) is
currently in multiple clinical trials. An alternative strategy for drug
development has been to target the regulatory C1 domains of PKC. Strong proof
of principle for this approach is provided by multiple natural products,
e.g. bryostatin 1 and PEP005, which are likewise in clinical trials
and which are directed at the C1 domains. A potential advantage of this
approach is the lesser number of homologous targets, <30 DAG-sensitive C1
domains compared with over 500 kinases, as well as further opportunities for
specificity provided by the diversity of lipid environments, which form a
half-site for ligand binding to the C1 domain. Because different PKC isoforms
may induce antagonistic activities, inhibition of one isoform may be
functionally equivalent to activation of an antagonistic isoform
(31).Along with the benzolactams
(20,
32), the DAG lactones have
provided a powerful synthetic platform for manipulating ligand: C1 domain
interactions (31). For
example, the DAG lactone derivative 130C037 displayed marked selectivity among
the recombinant C1a and C1b domains of PKCα and PKCδ as well as
substantial selectivity for RasGRP relative to PKCα
(33). Likewise, we have shown
that a modified DAG lactone (dioxolanones) can afford an additional point of
contact in ligand binding to the C1b domain of PKCδ
(34). Such studies provide
clear examples that ligand-C1 domain interactions can be manipulated to yield
novel patterns of recognition. Further selectivity might be gained with
bivalent compounds, exploiting the spacing and individual characteristics of
the C1a and C1b domains (35).
A better understanding of the differential roles of the two C1 domains in PKC
regulation is critical for the rational development of such compounds. In this
study, by molecularly manipulating the C1a or C1b domains in intact
PKCδ, we find that both the C1a and C1b domains play important roles in
PKCδ regulation. The C1b domain is predominant for ligand binding and
for membrane translocation of the whole PKCδ molecule. The C1a domain of
intact PKCδ plays only a secondary role in ligand binding but stabilizes
the PKCδ molecule at the plasma membrane for downstream signaling. In
addition, we show that the effect of the individual C1 domains of PKCδ
does not critically depend on their position within the regulatory domain. 相似文献
17.
Saija Kiljunen Neeta Datta Svetlana V. Dentovskaya Andrey P. Anisimov Yuriy A. Knirel Jos�� A. Bengoechea Otto Holst Mikael Skurnik 《Journal of bacteriology》2011,193(18):4963-4972
φA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. φA1122 infects Y. pestis grown both at 20°C and at 37°C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37°C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30°C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also φA1122 sensitive when grown at 22°C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous φA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (l-glycero-d-manno-heptose/d-glucopyranose)-Kdo/Ko (3-deoxy-d-manno-oct-2-ulopyranosonic acid/d-glycero-d-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully φA1122 resistant. Our data thus conclusively demonstrated that the φA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis. 相似文献
18.
19.