首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as ∼60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule assembly. Upon dephosphorylation, the PHF-tau migrates as ∼50–60-kDa bands on SDS-gels in a manner similar to tau that is isolated from normal brain and promotes microtubule assembly. The site(s) that inhibits microtubule assembly-promoting activity when phosphorylated in the diseased brain is not known. In this study, when tau was phosphorylated by Cdk5 in vitro, its mobility shifted from ∼60-kDa bands to ∼64- and 68-kDa bands in a time-dependent manner. This mobility shift correlated with phosphorylation at Ser202, and Ser202 phosphorylation inhibited tau microtubule-assembly promoting activity. When several tau point mutants were analyzed, G272V, P301L, V337M, and R406W mutations associated with FTDP-17, but not nonspecific mutations S214A and S262A, promoted Ser202 phosphorylation and mobility shift to a ∼68-kDa band. Furthermore, Ser202 phosphorylation inhibited the microtubule assembly-promoting activity of FTDP-17 mutants more than of WT. Our data indicate that FTDP-17 missense mutations, by promoting phosphorylation at Ser202, inhibit the microtubule assembly-promoting activity of tau in vitro, suggesting that Ser202 phosphorylation plays a major role in the development of NFT pathology in AD and related tauopathies.Neurofibrillary tangles (NFTs)4 and senile plaques are the two characteristic neuropathological lesions found in the brains of patients suffering from Alzheimer disease (AD). The major fibrous component of NFTs are paired helical filaments (PHFs) (for reviews see Refs. 13). Initially, PHFs were found to be composed of a protein component referred to as “A68” (4). Biochemical analysis reveled that A68 is identical to the microtubule-associated protein, tau (4, 5). Some characteristic features of tau isolated from PHFs (PHF-tau) are that it is abnormally hyperphosphorylated (phosphorylated on more sites than the normal brain tau), does not bind to microtubules, and does not promote microtubule assembly in vitro. Upon dephosphorylation, PHF-tau regains its ability to bind to and promote microtubule assembly (6, 7). Tau hyperphosphorylation is suggested to cause microtubule instability and PHF formation, leading to NFT pathology in the brain (13).PHF-tau is phosphorylated on at least 21 proline-directed and non-proline-directed sites (8, 9). The individual contribution of these sites in converting tau to PHFs is not entirely clear. However, some sites are only partially phosphorylated in PHFs (8), whereas phosphorylation on specific sites inhibits the microtubule assembly-promoting activity of tau (6, 10). These observations suggest that phosphorylation on a few sites may be responsible and sufficient for causing tau dysfunction in AD.Tau purified from the human brain migrates as ∼50–60-kDa bands on SDS-gel due to the presence of six isoforms that are phosphorylated to different extents (2). PHF-tau isolated from AD brain, on the other hand, displays ∼60-, 64-, and 68 kDa-bands on an SDS-gel (4, 5, 11). Studies have shown that ∼64- and 68-kDa tau bands (the authors have described the ∼68-kDa tau band as an ∼69-kDa band in these studies) are present only in brain areas affected by NFT degeneration (12, 13). Their amount is correlated with the NFT densities at the affected brain regions. Moreover, the increase in the amount of ∼64- and 68-kDa band tau in the brain correlated with a decline in the intellectual status of the patient. The ∼64- and 68-kDa tau bands were suggested to be the pathological marker of AD (12, 13). Biochemical analyses determined that ∼64- and 68-kDa bands are hyperphosphorylated tau, which upon dephosphorylation, migrated as normal tau on SDS-gel (4, 5, 11). Tau sites involved in the tau mobility shift to ∼64- and 68-kDa bands were suggested to have a role in AD pathology (12, 13). It is not known whether phosphorylation at all 21 PHF-sites is required for the tau mobility shift in AD. However, in vitro the tau mobility shift on SDS-gel is sensitive to phosphorylation only on some sites (6, 14). It is therefore possible that in the AD brain, phosphorylation on some sites also causes a tau mobility shift. Identification of such sites will significantly enhance our knowledge of how NFT pathology develops in the brain.PHFs are also the major component of NFTs found in the brains of patients suffering from a group of neurodegenerative disorders collectively called tauopathies (2, 11). These disorders include frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), corticobasal degeneration, progressive supranuclear palsy, and Pick disease. Each PHF-tau isolated from autopsied brains of patients suffering from various tauopathies is hyperphosphorylated, displays ∼60-, 64-, and 68-kDa bands on SDS-gel, and is incapable of binding to microtubules. Upon dephosphorylation, the above referenced PHF-tau migrates as a normal tau on SDS-gel, binds to microtubules, and promotes microtubule assembly (2, 11). These observations suggest that the mechanisms of NFT pathology in various tauopathies may be similar and the phosphorylation-dependent mobility shift of tau on SDS-gel may be an indicator of the disease. The tau gene is mutated in familial FTDP-17, and these mutations accelerate NFT pathology in the brain (1518). Understanding how FTDP-17 mutations promote tau phosphorylation can provide a better understanding of how NFT pathology develops in AD and various tauopathies. However, when expressed in CHO cells, G272V, R406W, V337M, and P301L tau mutations reduce tau phosphorylation (19, 20). In COS cells, although G272V, P301L, and V337M mutations do not show any significant affect, the R406W mutation caused a reduction in tau phosphorylation (21, 22). When expressed in SH-SY5Y cells subsequently differentiated into neurons, the R406W, P301L, and V337M mutations reduce tau phosphorylation (23). In contrast, in hippocampal neurons, R406W increases tau phosphorylation (24). When phosphorylated by recombinant GSK3β in vitro, the P301L and V337M mutations do not have any effect, and the R406W mutation inhibits phosphorylation (25). However, when incubated with rat brain extract, all of the G272V, P301L, V337M, and R406W mutations stimulate tau phosphorylation (26). The mechanism by which FTDP-17 mutations promote tau phosphorylation leading to development of NFT pathology has remained unclear.Cyclin-dependent protein kinase 5 (Cdk5) is one of the major kinases that phosphorylates tau in the brain (27, 28). In this study, to determine how FTDP-17 missense mutations affect tau phosphorylation, we phosphorylated four FTDP-17 tau mutants (G272V, P301L, V337M, and R406W) by Cdk5. We have found that phosphorylation of tau by Cdk5 causes a tau mobility shift to ∼64- and 68 kDa-bands. Although the mobility shift to a ∼64-kDa band is achieved by phosphorylation at Ser396/404 or Ser202, the mobility shift to a 68-kDa band occurs only in response to phosphorylation at Ser202. We show that in vitro, FTDP-17 missense mutations, by promoting phosphorylation at Ser202, enhance the mobility shift to ∼64- and 68-kDa bands and inhibit the microtubule assembly-promoting activity of tau. Our data suggest that Ser202 phosphorylation is the major event leading to NFT pathology in AD and related tauopathies.  相似文献   

2.
3.
mTORC1 contains multiple proteins and plays a central role in cell growth and metabolism. Raptor (regulatory-associated protein of mammalian target of rapamycin (mTOR)), a constitutively binding protein of mTORC1, is essential for mTORC1 activity and critical for the regulation of mTORC1 activity in response to insulin signaling and nutrient and energy sufficiency. Herein we demonstrate that mTOR phosphorylates raptor in vitro and in vivo. The phosphorylated residues were identified by using phosphopeptide mapping and mutagenesis. The phosphorylation of raptor is stimulated by insulin and inhibited by rapamycin. Importantly, the site-directed mutation of raptor at one phosphorylation site, Ser863, reduced mTORC1 activity both in vitro and in vivo. Moreover, the Ser863 mutant prevented small GTP-binding protein Rheb from enhancing the phosphorylation of S6 kinase (S6K) in cells. Therefore, our findings indicate that mTOR-mediated raptor phosphorylation plays an important role on activation of mTORC1.Mammalian target of rapamycin (mTOR)2 has been shown to function as a critical controller in cellular growth, survival, metabolism, and development (1). mTOR, a highly conserved Ser-Thr phosphatidylinositol 3-kinase-related protein kinase, structurally forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), each of which catalyzes the phosphorylation of different substrates (1). The best characterized substrates for mTORC1 are eIF4E-binding protein (4E-BP, also known as PHAS) and p70 S6 kinase (S6K) (1), whereas mTORC2 phosphorylates the hydrophobic and turn motifs of protein kinase B (Akt/protein kinase B) (2) and protein kinase C (3, 4). mTORC1 constitutively consists of mTOR, raptor, and mLst8/GβL (1), whereas the proline-rich Akt substrate of 40 kDa (PRAS40) is a regulatory component of mTORC1 that disassociates after growth factor stimulation (5, 6). Raptor is essential for mTORC1 activity by providing a substrate binding function (7) but also plays a regulatory role on mTORC1 with stimuli of growth factors and nutrients (8). In response to insulin, raptor binding to substrates is elevated through the release of the competitive inhibitor PRAS40 from mTORC1 (9, 10) because PRAS40 and the substrates of mTORC1 (4E-BP and S6K) appear to bind raptor through a consensus sequence, the TOR signaling (TOS) motif (1014). In response to amino acid sufficiency, raptor directly interacts with a heterodimer of Rag GTPases and promotes mTORC1 localization to the Rheb-containing vesicular compartment (15).mTORC1 integrates signaling pathways from growth factors, nutrients, energy, and stress, all of which generally converge on the tuberous sclerosis complex (TSC1-TSC2) through the phosphorylation of TSC2 (1). Growth factors inhibit the GTPase-activating protein activity of TSC2 toward the small GTPase Rheb via the PI3K/Akt pathway (16, 17), whereas energy depletion activates TSC2 GTPase-activating protein activity by stimulating AMP-activated protein kinase (AMPK) (18). Rheb binds directly to mTOR, albeit with very low affinity (19), and upon charging with GTP, Rheb functions as an mTORC1 activator (6). mTORC1 complexes isolated from growth factor-stimulated cells show increased kinase activity yet do not contain detectable levels of associated Rheb. Therefore, how Rheb-GTP binding to mTOR leads to an increase in mTORC1 activity toward substrates, and what the role of raptor is in this activation is currently unknown. More recently, the AMPK and p90 ribosomal S6 kinase (RSK) have been reported to directly phosphorylate raptor and regulate mTORC1 activity. The phosphorylation of raptor directly by AMPK reduced mTORC1 activity, suggesting an alternative regulation mechanism independent of TSC2 in response to energy supply (20). RSK-mediated raptor phosphorylation enhances mTORC1 activity and provides a mechanism whereby stress may activate mTORC1 independent of the PI3K/Akt pathway (21). Therefore, the phosphorylation status of raptor can be critical for the regulation of mTORC1 activity.In this study, we investigated phosphorylation sites in raptor catalyzed by mTOR. Using two-dimensional phosphopeptide mapping, we found that Ser863 and Ser859 in raptor were phosphorylated by mTOR both in vivo and in vitro. mTORC1 activity in vitro and in vivo is associated with the phosphorylation of Ser863 in raptor.  相似文献   

4.
p53 is an important tumor suppressor regulating the cell cycle at multiple stages in higher vertebrates. The p53 gene is frequently deleted or mutated in human cancers, resulting in loss of p53 activity. This leads to centrosome amplification, aneuploidy, and tumorigenesis, three phenotypes also observed after overexpression of the oncogenic kinase Aurora A. Accordingly, recent studies have focused on the relationship between these two proteins. p53 and Aurora A have been reported to interact in mammalian cells, but the function of this interaction remains unclear. We recently reported that Xenopus p53 can inhibit Aurora A activity in vitro but only in the absence of TPX2. Here we investigate the interplay between Xenopus Aurora A, TPX2, and p53 and show that newly synthesized TPX2 is required for nearly all Aurora A activation and for full p53 synthesis and phosphorylation in vivo during oocyte maturation. In vitro, phosphorylation mediated by Aurora A targets serines 129 and 190 within the DNA binding domain of p53. Glutathione S-transferase pull-down studies indicate that the interaction occurs via the p53 transactivation domain and the Aurora A catalytic domain around the T-loop. Our studies suggest that targeting of TPX2 might be an effective strategy for specifically inhibiting the phosphorylation of Aurora A substrates, including p53.Aurora A is an oncogenic protein kinase that is active in mitosis and plays important roles in spindle assembly and centrosome function (1). Overexpression of either human or Xenopus Aurora A transforms mammalian cells, but only when the p53 pathway is altered (24). Aurora A is localized on centrosomes during mitosis, and overexpression of the protein leads to centrosome amplification and aneuploidy (2, 3, 5, 6), two likely contributors to genomic instability (7, 8). Because of its oncogenic potential and amplification in human tumors, considerable attention has been focused on the mechanism of Aurora A activation in mitosis. Evidence from several laboratories indicates that activation occurs as a result of phosphorylation of a threonine residue in the T-loop of the kinase (4, 9, 10). Purification of Aurora A-activating activity from M phase Xenopus egg extracts led to an apparent activation mechanism in which autophosphorylation at the T-loop is stimulated by binding of the targeting protein for Xklp2 (TPX2) (1114). On the other hand, it has been shown that Aurora A activity can be inhibited by interaction with several proteins, including PP1 (protein phosphatase 1), AIP (Aurora A kinase-interacting protein), and, more recently, p53 (9, 1517).p53 is a well known tumor suppressor able to drive cell cycle arrest, apoptosis, or senescence when DNA is damaged or cell integrity is threatened (18, 19). In human cancers, the p53 gene is frequently deleted or mutated, leading to inactivation of p53 functions (20). p53 protein is almost undetectable in “normal cells,” mainly due to its instability. Indeed, during a normal cell cycle, p53 associates with Mdm2 in the nucleus and thereafter undergoes nuclear exclusion, allowing its ubiquitination and subsequent degradation (21). In cells under stress, p53 is stabilized through the disruption of its interaction with Mdm2 (21), leading to p53 accumulation in the nucleus and triggering different responses, as described above.Although p53 has mostly been characterized as a nuclear protein, it has also been shown to localize on centrosomes (2224) and regulate centrosome duplication (23, 24). Centrosomes are believed to act as scaffolds that concentrate many regulatory molecules involved in signal transduction, including multiple protein kinases (25). Thus, centrosomal localization of p53 might be important for its own regulation by phosphorylation/dephosphorylation, and one of its regulators could be the mitotic kinase Aurora A. Indeed, phenotypes associated with the misexpression of these two proteins are very similar. For example, overexpression of Aurora A kinase leads to centrosome amplification, aneuploidy, and tumorigenesis, and the same effects are often observed after down-regulation of p53 transactivation activity or deletion/mutation of its gene (26, 27).Several recent studies performed in mammalian models show interplay between p53 and Aurora A, with each protein having the ability to inhibit the other, depending on the stage of the cell cycle and the stress level of the cell (17, 28, 29). These studies reported that p53 is a substrate of Aurora A, and serines 215 and 315 were demonstrated to be the two major Aurora A phosphorylation sites in human p53 in vitro and in vivo. Phosphorylation of Ser-215 within the DNA binding domain of human p53 inhibited both p53 DNA binding and transactivation activities (29). Recently, our group showed that Xenopus p53 is able to inhibit Aurora A kinase activity in vitro, but this inhibitory effect can be suppressed by prior binding of Aurora A to TPX2 (9). Contrary to somatic cells, where p53 is nuclear, unstable, and expressed at a very low level, p53 is highly expressed in the cytoplasm of Xenopus oocytes and stable until later stages of development (30, 31). The high concentration of both p53 and Aurora A in the oocyte provided a suitable basis for investigating p53-Aurora A interaction and also evaluating Xenopus p53 as a substrate of Aurora A.  相似文献   

5.
We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC50(Ca2+) values for calmodulin binding and enzyme activation from the control values of 182 ± 2 and 422 ± 22 nm to 116 ± 2 and 300 ± 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q. K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry 47, 7557–7566). Although combining substitutions at Ser-617 and Ser-1179 has no additional effect on maximal synthase activity, cooperativity between the two substitutions completely disinhibits reductase activity and further reduces the EC50(Ca2+) values for calmodulin binding and enzyme activation to 77 ± 2 and 130 ± 5 nm. We have confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 and phosphomimetic substitutions at these positions have similar functional effects. Changes in the biochemical properties of eNOS produced by combined phosphorylation at Ser-617 and Ser-1179 are predicted to substantially increase synthase activity in cells at a typical basal free Ca2+ concentration of 50–100 nm.The nitric-oxide synthases catalyze formation of NO and l-citrulline from l-arginine and O2, with NADPH as the electron donor (1). The role of NO generated by endothelial nitricoxide synthase (eNOS)2 in the regulation of smooth muscle tone is well established and was the first of several physiological roles for this small molecule that have so far been identified (2). The nitric-oxide synthases are homodimers of 130–160-kDa subunits. Each subunit contains a reductase and oxygenase domain (1). A significant difference between the reductase domains in eNOS and nNOS and the homologous P450 reductases is the presence of inserts in these synthase isoforms that appear to maintain them in their inactive states (3, 4). A calmodulin (CaM)-binding domain is located in the linker that connects the reductase and oxygenase domains, and the endothelial and neuronal synthases both require Ca2+ and exogenous CaM for activity (5, 6). When CaM is bound, it somehow counteracts the effects of the autoinhibitory insert(s) in the reductase. The high resolution structure for the complex between (Ca2+)4-CaM and the isolated CaM-binding domain from eNOS indicates that the C-ter and N-ter lobes of CaM, which each contain a pair of Ca2+-binding sites, enfold the domain, as has been observed in several other such CaM-peptide complexes (7). Consistent with this structure, investigations of CaM-dependent activation of the neuronal synthase suggest that both CaM lobes must participate (8, 9).Bovine eNOS can be phosphorylated in endothelial cells at Ser-116, Thr-497, Ser-617, Ser-635, and Ser-1179 (1012). There are equivalent phosphorylation sites in the human enzyme (1012). Phosphorylation of the bovine enzyme at Thr-497, which is located in the CaM-binding domain, blocks CaM binding and enzyme activation (7, 11, 13, 14). Ser-116 can be basally phosphorylated in cells (10, 11, 13, 15), and dephosphorylation of this site has been correlated with increased NO production (13, 15). However, it has also been reported that a phosphomimetic substitution at this position has no effect on enzyme activity measured in vitro (13). Ser-1179 is phosphorylated in response to a variety of stimuli, and this has been reliably correlated with enhanced NO production in cells (10, 11). Indeed, NO production is elevated in transgenic endothelium expressing an eNOS mutant containing an S1179D substitution, but not in tissue expressing an S1179A mutant (16). Shear stress or insulin treatment is correlated with Akt-catalyzed phosphorylation of Ser-1179 in endothelial cells, and this is correlated with increased NO production in the absence of extracellular Ca2+ (1719). Akt-catalyzed phosphorylation or an S1179D substitution has also been correlated with increased synthase activity in cell extracts at low intracellular free [Ca2+] (17). Increased NO production has also been observed in cells expressing an eNOS mutant containing an S617D substitution, and physiological stimuli such as shear-stress, bradykinin, VEGF, and ATP appear to stimulate Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 (12, 13, 20). Although S617D eNOS has been reported to have the same maximum activity in vitro as the wild type enzyme (20), in our hands an S617D substitution increases the maximal CaM-dependent synthase activity of purified mutant enzyme ∼2-fold, partially disinhibits reductase activity, and reduces the EC50(Ca2+) values for CaM binding and enzyme activation (21).In this report, we describe the effects of a phosphomimetic Asp substitution at Ser-1179 in eNOS on the Ca2+ dependence of CaM binding and CaM-dependent activation of reductase and synthase activities. We also describe the effects on these properties of combining this substitution with one at Ser-617. Finally, we demonstrate that Akt-catalyzed phosphorylation and Asp substitutions at Ser-617 and Ser-1179 have similar functional effects. Our results suggest that phosphorylation of eNOS at Ser-617 and Ser-1179 can substantially increase synthase activity in cells at a typical basal free Ca2+ concentration of 50–100 nm, while single phosphorylations at these sites produce smaller activity increases, and can do so only at higher free Ca2+ concentrations.  相似文献   

6.
7.
8.
Rapid protein kinase D (PKD) activation and phosphorylation via protein kinase C (PKC) have been extensively documented in many cell types cells stimulated by multiple stimuli. In contrast, little is known about the role and mechanism(s) of a recently identified sustained phase of PKD activation in response to G protein-coupled receptor agonists. To elucidate the role of biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in these cells potently enhanced duration of ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. Cell treatment with the preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD activation induced by bombesin stimulation for <15 min but did not prevent PKD catalytic activation induced by bombesin stimulation for longer times (>60 min). The existence of sequential PKC-dependent and PKC-independent PKD activation was demonstrated in 3T3 cells stimulated with various concentrations of bombesin (0.3–10 nm) or with vasopressin, a different Gq-coupled receptor agonist. To gain insight into the mechanisms involved, we determined the phosphorylation state of the activation loop residues Ser744 and Ser748. Transphosphorylation targeted Ser744, whereas autophosphorylation was the predominant mechanism for Ser748 in cells stimulated with Gq-coupled receptor agonists. We next determined which phase of PKD activation is responsible for promoting enhanced ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. We show, for the first time, that the PKC-independent phase of PKD activation mediates prolonged ERK signaling and progression to DNA synthesis in response to bombesin or vasopressin through a pathway that requires epidermal growth factor receptor-tyrosine kinase activity. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.The understanding of the mechanisms that control cell proliferation requires the identification of the molecular pathways that govern the transition of quiescent cells into the S phase of the cell cycle. In this context the activation and phosphorylation of protein kinase D (PKD),4 the founding member of a new protein kinase family within the Ca2+/calmodulin-dependent protein kinase (CAMK) group and separate from the previously identified PKCs (for review, see Ref. 1), are attracting intense attention. In unstimulated cells, PKD is in a state of low catalytic (kinase) activity maintained by autoinhibition mediated by the N-terminal domain, a region containing a repeat of cysteinerich zinc finger-like motifs and a pleckstrin homology (PH) domain (14). Physiological activation of PKD within cells occurs via a phosphorylation-dependent mechanism first identified in our laboratory (57). In response to cellular stimuli (1), including phorbol esters, growth factors (e.g. PDGF), and G protein-coupled receptor (GPCR) agonists (6, 816) that signal through Gq, G12, Gi, and Rho (11, 1519), PKD is converted into a form with high catalytic activity, as shown by in vitro kinase assays performed in the absence of lipid co-activators (5, 20).During these studies multiple lines of evidence indicated that PKC activity is necessary for rapid PKD activation within intact cells. For example, rapid PKD activation was selectively and potently blocked by cell treatment with preferential PKC inhibitors (e.g. GF109203X or Gö6983) that do not directly inhibit PKD catalytic activity (5, 20), implying that PKD activation in intact cells is mediated directly or indirectly through PKCs. Many reports demonstrated the operation of a rapid PKC/PKD signaling cascade induced by multiple GPCR agonists and other receptor ligands in a range of cell types (for review, see Ref. 1). Our previous studies identified Ser744 and Ser748 in the PKD activation loop (also referred as activation segment or T-loop) as phosphorylation sites critical for PKC-mediated PKD activation (1, 4, 7, 17, 21). Collectively, these findings demonstrated the existence of a rapidly activated PKC-PKD protein kinase cascade(s). In a recent study we found that the rapid PKC-dependent PKD activation was followed by a late, PKC-independent phase of catalytic activation and phosphorylation induced by stimulation of the bombesin Gq-coupled receptor ectopically expressed in COS-7 cells (22). This study raised the possibility that PKD mediates rapid biological responses downstream of PKCs, whereas, in striking contrast, PKD could mediate long term responses through PKC-independent pathways. Despite its potential importance for defining the role of PKC and PKD in signal transduction, this hypothesis has not been tested in any cell type.Accumulating evidence demonstrates that PKD plays an important role in several cellular processes and activities, including signal transduction (14, 2325), chromatin organization (26), Golgi function (27, 28), gene expression (2931), immune regulation (26), and cell survival, adhesion, motility, differentiation, DNA synthesis, and proliferation (for review, see Ref. 1). In Swiss 3T3 fibroblasts, a cell line used extensively as a model system to elucidate mechanisms of mitogenic signaling (3234), PKD expression potently enhances ERK activation, DNA synthesis, and cell proliferation induced by Gq-coupled receptor agonists (8, 14). Here, we used this model system to elucidate the role and mechanism(s) of biphasic PKD activation. First, we show that the Gq-coupled receptor agonists bombesin and vasopressin, in contrast to phorbol esters, specifically induce PKD activation through early PKC-dependent and late PKC-independent mechanisms in Swiss 3T3 cells. Subsequently, we demonstrate for the first time that the PKC-independent phase of PKD activation is responsible for promoting ERK signaling and progression to DNA synthesis through an epidermal growth factor receptor (EGFR)-dependent pathway. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.  相似文献   

9.
Lipoprotein lipase (LPL) is a principal enzyme responsible for the clearance of chylomicrons and very low density lipoproteins from the bloodstream. Two members of the Angptl (angiopoietin-like protein) family, namely Angptl3 and Angptl4, have been shown to inhibit LPL activity in vitro and in vivo. Here, we further investigated the structural basis underlying the LPL inhibition by Angptl3 and Angptl4. By multiple sequence alignment analysis, we have identified a highly conserved 12-amino acid consensus motif that is present within the coiled-coil domain (CCD) of both Angptl3 and Angptl4, but not other members of the Angptl family. Substitution of the three polar amino acid residues (His46, Gln50, and Gln53) within this motif with alanine abolishes the inhibitory effect of Angptl4 on LPL in vitro and also abrogates the ability of Angptl4 to elevate plasma triglyceride levels in mice. The CCD of Angptl4 interacts with LPL and converts the catalytically active dimers of LPL to its inactive monomers, whereas the mutant protein with the three polar amino acids being replaced by alanine loses such a property. Furthermore, a synthetic peptide consisting of the 12-amino acid consensus motif is sufficient to inhibit LPL activity, although the potency is much lower than the recombinant CCD of Angptl4. In summary, our data suggest that the 12-amino acid consensus motif within the CCD of Angptl4, especially the three polar residues within this motif, is responsible for its interaction with and inhibition of LPL by blocking the enzyme dimerization.Lipoprotein lipase (LPL)3 is an endothelium-bound enzyme that catalyzes the hydrolysis of plasma triglyceride (TG) associated with chylomicrons and very low density lipoproteins (1, 2). This enzyme plays a major role in maintaining lipid homeostasis by promoting the clearance of TG-rich lipoproteins from the bloodstream. Abnormality in LPL functions has been associated with a number of pathological conditions, including atherosclerosis, dyslipidemia associated with diabetes, and Alzheimer disease (1).LPL is expressed in a wide variety of cell types, particularly in adipocytes and myocytes (2). As a rate-limiting enzyme for clearance of TG-rich lipoproteins, the activity of LPL is tightly modulated by multiple mechanisms in a tissue-specific manner in response to nutritional changes (3, 4). The enzymatic activity of LPL in adipose tissue is enhanced after feeding to facilitate the storage of TG, whereas it is down-regulated during fasting to increase the utilization of TG by other tissues (5). The active form of LPL is a noncovalent homodimer with the subunits associated in a head-to-tail manner, and the dissociation of its dimeric form leads to the formation of a stable inactive monomeric conformation and irreversible enzyme inactivation (6). At the post-translational level, the LPL activity is regulated by numerous apolipoprotein co-factors. For instance, apoCII, a small apolipoprotein consisting of 79 amino acid residues in human, activates LPL by directly binding to the enzyme (7, 8). By contrast, several other apolipoproteins such as apoCI, apo-CIII, and apoE have been shown to inhibit the LPL activity in vitro (3).Angiopoietin-like proteins (Angptl) are a family of secreted proteins consisting of seven members, Angptl1 to Angptl7 (9, 10). All the members of the Angptl family share a similar domain organization to those of angiopoietins, with an NH2-terminal coiled-coil domain (CCD) and a COOH-terminal fibrinogen-like domain. Among the seven family members, only Angptl3 and Angptl4 have been shown to be involved in regulating triglyceride metabolism (10, 11). The biological functions of Angptl3 in lipid metabolism were first discovered by Koishi et al. (12) in their positional cloning of the recessive mutation gene responsible for the hypolipidemia phenotype in a strain of obese mouse KK/snk. Subsequent studies have demonstrated that Angptl3 increases plasma TG levels by inhibiting the LPL enzymatic activity (1315). Angptl4, also known as fasting-induced adipocyte factor, hepatic fibrinogen/angiopoietin-related protein, or peroxisome proliferator-activated receptor-γ angiopoietin-related, is a secreted glycoprotein abundantly expressed in adipocyte, liver, and placenta (1618). In addition to its role in regulating angiogenesis, a growing body of evidence demonstrated that Angptl4 is an important player of lipid metabolism (10, 11). Elevation of circulating Angptl4 by transgenic or adenoviral overexpression, or by direct supplementation of recombinant protein, leads to a marked elevation in the levels of plasma TG and low density lipoprotein cholesterol in mice (1922). By contrast, Angptl4 knock-out mice exhibit much lower plasma TG and cholesterol levels compared with the wild type littermates (19, 20). Notably, treatment of several mouse models (such as C57BL/6J, ApoE–/–, LDLR–/–, and db/db obese/diabetic mice) with a neutralizing antibody against Angptl4 recapitulate the lipid phenotype found in Angptl4 knock-out mice (19). The role of Angptl4 as a physiological inhibitor of LPL is also supported by the finding that its expression levels in adipose tissue change rapidly during the fed-to-fasting transitions and correlate inversely with LPL activity (23). In humans, a genetic variant of the ANGPTL4 gene (E40K) has been found to be associated with significantly lower plasma TG levels and higher high density lipoprotein cholesterol concentrations in several ethnic groups (2426).Angptl3 and Angptl4 share many common biochemical and functional properties (10). In both humans and rodents, Angptl3 and Angptl4 are proteolytically cleaved at the linker region and circulate in plasma as two truncated fragments, including NH2-terminal CCD and COOH-terminal fibrinogen-like domain (14, 2729). The effects of both Angptl3 and Angptl4 on elevating plasma TG levels are mediated exclusively by their NH2-terminal CCDs (15, 22, 23, 27, 30). The CCDs of Angptl3 and Angptl4 have been shown to inhibit the LPL activity in vitro as well as in mice (23,30,31). Angptl4 inhibits LPL by promoting the conversion of the catalytically active LPL dimers into catalytically inactive LPL monomers, thereby leading to the inactivation of LPL (23, 31). However, the detailed structural and molecular basis underlying the LPL inhibition by Angptl3 and Angptl4 remain poorly characterized at this stage.In this study, we analyzed all known amino acid sequences of Angptl3 and Angptl4 from various species and found a short motif, LAXGLLXLGXGL (where X represents polar amino acid residues), which corresponds to amino acid residues 46–57 and 44–55 of human Angptl3 and Angptl4, respectively, is highly conserved despite the low degree of their overall homology (∼30%). Using both in vitro and in vivo approaches, we demonstrated that this 12-amino acid sequence motif, in particular the three polar amino acid residue within this motif, is essential for mediating the interactions between LPL and Angpt4, which in turn disrupts the dimerization of the enzyme.  相似文献   

10.
11.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

12.
13.
14.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

15.
NHE5 is a brain-enriched Na+/H+ exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.Neurons and glial cells in the central and peripheral nervous systems are especially sensitive to perturbations of pH (1). Many voltage- and ligand-gated ion channels that control membrane excitability are sensitive to changes in cellular pH (1-3). Neurotransmitter release and uptake are also influenced by cellular and organellar pH (4, 5). Moreover, the intra- and extracellular pH of both neurons and glia are modulated in a highly transient and localized manner by neuronal activity (6, 7). Thus, neurons and glia require sophisticated mechanisms to finely tune ion and pH homeostasis to maintain their normal functions.Na+/H+ exchangers (NHEs)3 were originally identified as a class of plasma membrane-bound ion transporters that exchange extracellular Na+ for intracellular H+, and thereby regulate cellular pH and volume. Since the discovery of NHE1 as the first mammalian NHE (8), eight additional isoforms (NHE2-9) that share 25-70% amino acid identity have been isolated in mammals (9, 10). NHE1-5 commonly exhibit transporter activity across the plasma membrane, whereas NHE6-9 are mostly found in organelle membranes and are believed to regulate organellar pH in most cell types at steady state (11). More recently, NHE10 was identified in human and mouse osteoclasts (12, 13). However, the cDNA encoding NHE10 shares only a low degree of sequence similarity with other known members of the NHE gene family, raising the possibility that this sodium-proton exchanger may belong to a separate gene family distantly related to NHE1-9 (see Ref. 9).NHE gene family members contain 12 putative transmembrane domains at the N terminus followed by a C-terminal cytosolic extension that plays a role in regulation of the transporter activity by protein-protein interactions and phosphorylation. NHEs have been shown to regulate the pH environment of synaptic nerve terminals and to regulate the release of neurotransmitters from multiple neuronal populations (14-16). The importance of NHEs in brain function is further exemplified by the findings that spontaneous or directed mutations of the ubiquitously expressed NHE1 gene lead to the progression of epileptic seizures, ataxia, and increased mortality in mice (17, 18). The progression of the disease phenotype is associated with loss of specific neuron populations and increased neuronal excitability. However, NHE1-null mice appear to develop normally until 2 weeks after birth when symptoms begin to appear. Therefore, other mechanisms may compensate for the loss of NHE1 during early development and play a protective role in the surviving neurons after the onset of the disease phenotype.NHE5 was identified as a unique member of the NHE gene family whose mRNA is expressed almost exclusively in the brain (19, 20), although more recent studies have suggested that NHE5 might be functional in other cell types such as sperm (21, 22) and osteosarcoma cells (23). Curiously, mutations found in several forms of congenital neurological disorders such as spinocerebellar ataxia type 4 (24-26) and autosomal dominant cerebellar ataxia (27-29) have been mapped to chromosome 16q22.1, a region containing NHE5. However, much remains unknown as to the molecular regulation of NHE5 and its role in brain function.Very few if any proteins work in isolation. Therefore identification and characterization of binding proteins often reveal novel functions and regulation mechanisms of the protein of interest. To begin to elucidate the biological role of NHE5, we have started to explore NHE5-binding proteins. Previously, β-arrestins, multifunctional scaffold proteins that play a key role in desensitization of G-protein-coupled receptors, were shown to directly bind to NHE5 and promote its endocytosis (30). This study demonstrated that NHE5 trafficking between endosomes and the plasma membrane is regulated by protein-protein interactions with scaffold proteins. More recently, we demonstrated that receptor for activated C-kinase 1 (RACK1), a scaffold protein that links signaling molecules such as activated protein kinase C, integrins, and Src kinase (31), directly interacts with and activates NHE5 via integrin-dependent and independent pathways (32). These results further indicate that NHE5 is partly associated with focal adhesions and that its targeting to the specialized microdomain of the plasma membrane may be regulated by various signaling pathways.Secretory carrier membrane proteins (SCAMPs) are a family of evolutionarily conserved tetra-spanning integral membrane proteins. SCAMPs are found in multiple organelles such as the Golgi apparatus, trans-Golgi network, recycling endosomes, synaptic vesicles, and the plasma membrane (33, 34) and have been shown to play a role in exocytosis (35-38) and endocytosis (39). Currently, five isoforms of SCAMP have been identified in mammals. The extended N terminus of SCAMP1-3 contain multiple Asn-Pro-Phe (NPF) repeats, which may allow these isoforms to participate in clathrin coat assembly and vesicle budding by binding to Eps15 homology (EH)-domain proteins (40, 41). Further, SCAMP2 was shown recently to bind to the small GTPase Arf6 (38), which is believed to participate in traffic between the recycling endosomes and the cell surface (42, 43). More recent studies have suggested that SCAMPs bind to organellar membrane type NHE7 (44) and the serotonin transporter SERT (45) and facilitate targeting of these integral membrane proteins to specific intracellular compartments. We show in the current study that SCAMP2 binds to NHE5, facilitates the cell-surface targeting of NHE5, and elevates Na+/H+ exchange activity at the plasma membrane, whereas expression of a SCAMP2 deletion mutant lacking the N-terminal domain containing the NPF repeats suppresses the effect. Further we show that this activity of SCAMP2 requires an active form of a small GTPase Arf6, but not Rab11. We propose a model in which SCAMPs bind to NHE5 in the endosomal compartment and control its cell-surface abundance via an Arf6-dependent pathway.  相似文献   

16.
We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.Hepatitis C virus (HCV)4 is a small, positive strand, RNA-enveloped virus belonging to the Flaviviridae family and the genus Hepacivirus. With 120–180 million chronically infected individuals worldwide, hepatitis C virus infection represents a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (1). The HCV viral genome (∼9.6 kb) codes for a unique polyprotein of ∼3000 amino acids (recently reviewed in Refs. 24). Following processing via viral and cellular proteases, this polyprotein gives rise to at least 10 viral proteins, divided into structural (core, E1, and E2 envelope glycoproteins) and nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B). Nonstructural proteins are involved in polyprotein processing and viral replication. The set composed of NS3, NS4A, NS4B, NS5A, and NS5B constitutes the minimal protein component required for viral replication (5).Cyclophilins are cellular proteins that have been identified first as CsA-binding proteins (6). As FK506-binding proteins (FKBP) and parvulins, cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyze the cis/trans isomerization of the peptide linkage preceding a proline (6, 7). Several subtypes of cyclophilins are present in mammalian cells (8). They share a high sequence homology and a well conserved three-dimensional structure but display significant differences in their primary cellular localization and in abundance (9). CypA, the most abundant of the cyclophilins, is primarily cytoplasmic, whereas CypB is directed to the endoplasmic reticulum lumen or the secretory pathway. CypD, on the other hand, is the mitochondrial cyclophilin. Cyclophilins are involved in numerous physiological processes such as protein folding, immune response, and apoptosis and also in the replication cycle of viruses including vaccinia virus, vesicular stomatitis virus, severe acute respiratory syndrome (SARS)-coronavirus, and human immunodeficiency virus (HIV) (for review see Ref. 10). For HIV, CypA has been shown to interact with the capsid domain of the HIV Gag precursor polyprotein (11). CypA thereby competes with capsid domain/TRIM5 interaction, resulting in a loss of the antiviral protective effect of the cellular restriction factor TRIM5α (12, 13). Moreover, it has been shown that CypA catalyzes the cis/trans isomerization of Gly221-Pro222 in the capsid domain and that it has functional consequences for HIV replication efficiency (1416). For HCV, Watashi et al. (17) have described a molecular and functional interaction between NS5B, the viral RNA-dependent RNA polymerase (RdRp), and cyclophilin B (CypB). CypB may be a key regulator in HCV replication by modulating the affinity of NS5B for RNA. This regulation is abolished in the presence of cyclosporin A (CsA), an inhibitor of cyclophilins (6). These results provided for the first time a molecular mechanism for the early-on observed anti-HCV activity of CsA (1820). Although this initial report suggests that only CypB would be involved in the HCV replication process (17), a growing number of studies have recently pointed out a role for other cyclophilins (2125).In vitro selection of CsA-resistant HCV mutants indicated the importance of two HCV nonstructural proteins, NS5B and NS5A (26), with a preponderant effect for mutations in the C-terminal half of NS5A. NS5A is a large phosphoprotein (49 kDa), indispensable for HCV replication and particle assembly (2729), but for which the exact function(s) in the HCV replication cycle remain to be elucidated. This nonstructural protein is anchored to the cytoplasmic leaflet of the endoplasmic reticulum membrane via an N-terminal amphipathic α-helix (residues 1–27) (30, 31). Its cytoplasmic sequence can be divided into three domains: D1 (residues 27–213), D2 (residues 250–342), and D3 (residues 356–447), all connected by low complexity sequences (32). D1, a zinc-binding domain, adopts a dimeric claw-shaped structure, which is proposed to interact with RNA (33, 34). NS5A-D2 is essential for HCV replication, whereas NS5A-D3 is a key determinant for virus infectious particle assembly (27, 35). NS5A-D2 and -D3, for which sequence conservation among HCV genotypes is significantly lower than for D1, have been proposed to be natively unfolded domains (28, 32). Molecular and structural characterization of NS5A-D2 from HCV genotype 1a has confirmed the disordered nature of this domain (36, 37).As it is still not clear which cyclophilins are cofactors for HCV replication, and as mutations in HCV NS5A protein have been associated with CsA resistance, we decided to examine the interaction between both CypA and CypB and domain 2 of the HCV NS5A protein. We first characterized, at the molecular level, NS5A-D2 from the HCV JFH1 infectious strain (genotype 2a) and showed by NMR spectroscopy that this natively unfolded domain indeed interacts with both cyclophilin A and cyclophilin B. Our NMR chemical shift mapping experiments indicated that the interaction occurs at the level of the cyclophilin active site, whereas it lacks a precise localization on NS5A-D2. A peptide derived from the only well conserved amino acid motif in NS5A-D2 did interact with cyclophilin A but only with a 10-fold lower affinity than the full domain. We concluded from this that the many proline residues form multiple anchoring points, especially when they adopt the cis conformation. NMR exchange spectroscopy further demonstrated that NS5A-D2 is a substrate for the PPIase activities of both CypA and CypB. Both the NS5A/cyclophilin interaction and the PPIase activity of the cyclophilins on NS5A-D2 were abolished by CsA, underscoring the specificity of the interaction.  相似文献   

17.
18.
19.
20.
The protein kinase D (PKD) family of serine/threonine kinases, which can be activated by gastrointestinal hormones, consists of three distinct isoforms that modulate a variety of cellular processes including intracellular protein transport as well as constitutive and regulated secretion. Although isoform-specific functions have been identified in a variety of cell lines, the expression and function of PKD isoforms in normal, differentiated secretory tissues is unknown. Here, we demonstrate that PKD isoforms are differentially expressed in the exocrine and endocrine cells of the pancreas. Specifically, PKD3 is the predominant isoform expressed in exocrine cells of the mouse and human pancreas, whereas PKD1 and PKD2 are more abundantly expressed in the pancreatic islets. Within isolated mouse pancreatic acinar cells, PKD3 undergoes rapid membrane translocation, trans-activating phosphorylation, and kinase activation after gastrointestinal hormone or cholinergic stimulation. PKD phosphorylation in pancreatic acinar cells occurs viaaCa2+-independent, diacylglycerol- and protein kinase C-dependent mechanism. PKD phosphorylation can also be induced by physiologic concentrations of secretagogues and by in vivo stimulation of the pancreas. Furthermore, activation of PKD3 potentiates MEK/ERK/RSK (RSK, ribosomal S6 kinase) signaling and significantly enhances cholecystokinin-mediated pancreatic amylase secretion. These findings reveal a novel distinction between the exocrine and endocrine cells of the pancreas and further identify PKD3 as a signaling molecule that promotes hormone-stimulated amylase secretion.Protein kinase D (PKD),2 a serine/threonine kinase family with a catalytic domain homologous to the Ca2+/calmodulin-dependent kinase domain and two cysteine-rich phorbol ester binding domains similar to those of protein kinase C (PKC), is a physiologically important downstream mediator of diacylglycerol (DAG) signal transduction (1, 2). The mammalian PKDs include three members, PKD1, PKD2, and PKD3, which demonstrate different expression patterns and functions depending on the cell type and external signal stimuli. PKDs are ubiquitously expressed, but levels of individual isoforms vary with developmental stage and cell type (3). PKD proteins are reported to localize in the cytosol, Golgi, nucleus, and vesicle structures (4-9). Activation of PKDs results in a dynamic translocation among subcellular compartments (10, 11). Expression of multiple isoforms in different cell types and in different subcellular localizations suggests that individual PKD isoforms may serve specific functions. The majority of findings demonstrating the diverse expression patterns and functions of PKD have been described using established cell lines (4-9, 12). However, little is known about PKD isoform expression and function in normal differentiated cells and tissues.Recent functional studies have shown that PKD isoforms differentially regulate exocytic protein trafficking and cargo specificity (9, 12-14). Furthermore, PKD isoforms are differentially activated by oxidative stress signaling via PKCδ-mediated tyrosine phosphorylation (15). In each of these studies, PKD3 was found to have a regulatory mechanism or cellular function distinct from that of PKD1 and PKD2. Unlike the other two isoforms, PKD3 lacks the N terminus hydrophobic domain or the C terminus PDZ binding motif and contains divergent PH (pleckstrin homology) and C1 domains, which are important for regulating its catalytic activity (12, 16, 17). Current knowledge of the physiologic function of PKD3 is limited. It has been demonstrated using kinase-inactive mutants that PKD3 activity is required for basolateral exocytosis in Madin-Darby canine kidney cells (13). PKD3 has also been implicated in the epigenetic control of chromatin by regulating class II histone deacetylases in B lymphocytes (18). Furthermore, PKD3 was found to be a specific regulator of glucose transport in skeletal muscle cells (19).The exocrine pancreas is highly specialized for the synthesis, storage, and exocrine secretion of digestive enzymes and bicarbonate-rich fluid (20). More than 90% of the newly synthesized proteins in the pancreas is targeted to the secretory pathway (21). In addition, the pancreas contains a variety of endocrine cells localized to the islets which secrete peptide hormones. Numerous steps in the secretory pathway are modulated by DAG signaling, which promotes secretion by maintaining Golgi function and/or activating DAG receptor kinases such as PKCs, which are regulators of exocytic proteins (1, 22-25). PKD is also critical for DAG-mediated secretion, as it is recruited by DAG to the trans-Golgi network, where it phosphorylates the lipid kinase phosphatidylinositol 4-kinase to initiate the process of vesicle fission (9, 26). Gastrointestinal (GI) hormones such as cholecystokinin (CCK), gastrin, neurotensin (NT), and bombesin (BBS)/gastrin-releasing peptide are potent regulatory peptides that modulate pancreatic function (27, 28). They are known to activate PKDs to promote cell proliferation and survival in gut epithelial cells (29-32); however, the role of PKDs in modulating the secretory actions of GI hormones is unknown.Although the PKD isoforms have been reported to be expressed in secretory tissues such as salivary glands, adrenal glands, intestinal mucosa, and the pituitary (3, 5, 33), the role of PKD in the process of regulated secretion remains poorly understood. Previously, we demonstrated that PKD1 mediates NT peptide secretion from a pancreas-derived neuroendocrine cell line, BON, and that PKD1 activation is regulated by PKC and Rho/Rho kinase pathways (4); PKD1 and PKD2 isoforms are highly expressed in this endocrine cell line with little to no PKD3 expression, thus suggesting that PKD1/2 may be the predominant isoforms for endocrine secretion. The distribution and role of PKD isoforms in the pancreas, an organ with both exocrine and endocrine functions, is not known. Interestingly, we demonstrate that in both human and mouse pancreas, PKD3 is the predominant PKD isoform expressed in the exocrine acini, whereas PKD1 and PKD2 are more highly expressed in endocrine islets. PKD3 is catalytically activated by GI hormone stimulation of the pancreas, and its activation is dependent on CCK1/2 receptor binding and on DAG/PKC activity. PKD3 overexpression in mouse pancreatic acinar cells significantly increased CCK-mediated pancreatic amylase secretion, suggesting that PKD3, in concert with other signaling molecules, contributes to stimulated amylase secretion. Our findings reveal a distinct expression pattern in the exocrine and endocrine cells of the mouse and human pancreas and identify PKD3 as a novel DAG-activated mediator of the exocrine secretory process in response to GI hormone signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号