首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Wiśniewski JR 《Amino acids》2011,41(2):223-233
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.  相似文献   

2.
Previous papers in the series have shown that the surface membranes of herpesvirus-infected cells acquire new immunological specificities and that purified infected cell membrane preparations, characterized by their physical properties rather than topology in the cell, contain new glycoproteins genetically determined by the virus. In this study, we prepared purified plasma membrane identified by its 5' nucleotidase, fucose, and reduced nicotinamide adenine dinucleotide-diaphorase content. Analysis of the membrane proteins and glycoproteins by electrophoresis in acrylamide gels indicated the following. (i) Purified plasma membranes from infected cells contained two sets of proteins, i.e., host proteins were present both before and after infection and viral proteins were present only after infection. (ii) After infection, no appreciable selective or nonselective loss of host proteins from membranes was demonstrable. However, no new host proteins were made. (iii) Electropherograms of plasma membrane proteins from infected cells indicated the presence of at least 12 virus-specific proteins ranging in molecular weight from 25 x 10(3) to 126 x 10(3) daltons. Of these, at least nine were glycosylated. Proteins and glycoproteins with similar electrophoretic mobilities but in somewhat different ratios were also present in preparations of highly purified virions.  相似文献   

3.
Tunicamycin, an antibiotic which prevents the glycosylation of newly synthesized proteins, inhibits the replication of both vesicular stomatitis virus and Sindbis virus. In tunicamycin-treated infected cells, all of the viral proteins are synthesized but the glycoproteins are devoid of carbohydrate. The nonglycosylated glycoproteins could not be detected on the outside of the plasma membrane by lactoperoxidase labeling, indirect immunofluorescence staining, or chymotrypsin treatment of intact cells, whereas the glycosylated glycoproteins were readily detected by all three methods. These results indicate that the bulk of the nonglycosylated glycoproteins are unable to undergo the normal migration to the cell surface. In contrast to the normal glycosylated viral glycoproteins, the nonglycosylated glycoproteins were insoluble in nonionic detergents such as Triton X-100. The nonglycosylated glycoprotein of vesicular stomatitis virus could be solubilized using a combination of 6 M guanidine hydrochloride and 0.2% Triton X-100, but precipitated when the 6 M guanidine was removed by dialysis. These results suggest that the lack of carbohydrate alters the properties of the glycoproteins, which may explain their impaired mobility through the intracellular membranous system.  相似文献   

4.
Polypeptide precursors to the major glycoproteins specified by herpes simplex virus type 1 were identified in immunoprecipitation experiments using antisera that reacted specifically with the viral glycoproteins and their precursors. The results demonstrate that the major glycosylated proteins detected in infected cells are derived from four antigenically distinct polypeptides. Three of these polypeptides become glycosylated in two discrete stages, yielding partially glycosylated intermediates and fully glycosylated products. The final products are the predominant species detected in cytoplasmic virions and in plasma membranes. The fourth polypeptide precursor appears to acquire very little carbohydrate and differs in several respects from the other three precursors.  相似文献   

5.
Viral envelope proteins mediate interactions with host cells, leading to internalization and intracellular propagation. Envelope proteins are glycosylated and are known to serve important functions in masking host immunity to viral glycoproteins. However, the viral infectious cycle in cells may also lead to aberrant glycosylation that may elicit immunity. Our knowledge of immunity to aberrant viral glycans and glycoproteins is limited, potentially due to technical limitations in identifying immunogenic glycans and glycopeptide epitopes. This work describes three different complementary methods for high-throughput screening and identification of potential immunodominant O-glycopeptide epitopes on viral envelope glycoproteins: (i) on-chip enzymatic glycosylation of scan peptides, (ii) chemical glycopeptide microarray synthesis, and (iii) a one-bead-one-compound random glycopeptide library. We used herpes simplex virus type 2 (HSV-2) as a model system and identified a simple O-glycopeptide pan-epitope, (501)PPA(GalNAc)TAPG(507), on the mature gG-2 glycoprotein that was broadly recognized by IgG antibodies in HSV-2-infected individuals but not in HSV-1-infected or noninfected individuals. Serum reactivity to the extended sialyl-T glycoform was tolerated, suggesting that self glycans can participate in immune responses. The methods presented provide new insight into viral immunity and new targets for immunodiagnostic and therapeutic measures.  相似文献   

6.
7.
Cultured mouse 3T3 cells treated with phosphatidylserine or phosphatidylserine/phosphatidylcholine (3: 7 mole ratio) liposomes containing ortho- and paramyxovirus envelope glycoproteins become susceptible to killing by virus-specific cytotoxic T lymphocytes indicating that the liposome-derived glycoproteins have been inserted into the cellular plasma membrane. Cells incubated with liposomes of similar lipid composition containing viral antigens plus a dinitrophenylated lipid hapten were killed by both virus- and hapten-specific T lymphocytes indicating that both protein and lipid components are inserted into the plasma membrane. We consider that assimilation of liposome-derived antigens into the plasma membrane results from fusion of liposomes with the plasma membrane. Cells incubated with phosphatidylcholine liposomes containing lipid haptens and viral glycoproteins were not killed by cytotoxic lymphocytes indicating that liposomes of this composition do not fuse with the plasma membrane. Liposome-derived paramyxovirus glycoproteins inserted into the plasma membrane retain their functional activity as shown by their ability to induce cell fusion. These experiments demonstrate the feasibility of using liposomes as carriers for introducing integral membrane (glyco)proteins into the plasma membrane of cultured cells and establish a new approach for studying the role of individual (glyco)proteins in the expression of specific cell surface properties.  相似文献   

8.
We performed here MS-based cell surface proteome profiling of HCT-116 cells by two distinct methods based on biotin labeling and glycoprotein capturing. In total, 742 biotinylated and 219 glycosylated proteins were identified by the biotin labeling and glycoprotein capturing, of which 224 and 138 proteins known to be located on plasma membrane were included, respectively, according to ingenuity pathway analysis. Although 104 plasma membrane proteins were identified by both methods, the rest of 154 were identified only by one. Almost all the identified plasma membrane proteins possessed consensus N-glycosylation sites, and proteins having various numbers of glycosylation sites were identified by both methods. Thus, the discrepancies of the identified proteins obtained from those two methods might not be only due to the number of glycosylation sites, but also to the expression and/or glycosylation level of the cell surface proteins. We also identified 312 N-glycosylated proteins from xenograft samples by glycoprotein capturing of which 135 were known as plasma membrane proteins. Although a number of highly-expressed plasma membrane proteins were common between culture and xenograft cells, some proteins showed culture- or xenograft-specific expression, suggesting that those proteins might contribute to grow in different environment.  相似文献   

9.
Biochemical functions of proteins in cells frequently involve interactions with various ligands. Proteomic methods for the identification of proteins that interact with specific ligands such as metabolites, signaling molecules, and drugs are valuable in investigating the regulatory mechanisms of cellular metabolism, annotating proteins with unknown functions, and elucidating pharmacological mechanisms. Here we report an energetics-based target identification method in which target proteins in a cell lysate are identified by exploiting the effect of ligand binding on their stabilities. Urea-induced unfolding of proteins in cell lysates is probed by a short pulse of proteolysis, and the effect of a ligand on the amount of folded protein remaining is monitored on a proteomic scale. As proof of principle, we identified proteins that interact with ATP in the Escherichia coli proteome. Literature and database mining confirmed that a majority of the identified proteins are indeed ATP-binding proteins. Four identified proteins that were previously not known to interact with ATP were cloned and expressed to validate the result. Except for one protein, the effects of ATP on urea-induced unfolding were confirmed. Analyses of the protein sequences and structure models were also employed to predict potential ATP binding sites in the identified proteins. Our results demonstrate that this energetics-based target identification approach is a facile method to identify proteins that interact with specific ligands on a proteomic scale.  相似文献   

10.
Novikoff hepatocellular carcinoma cells were radioiodinated by a cell surface-specific method using lactoperoxid ase/125I. The iodinated proteins were solubilized in 0.5% Nonidet P-40 and subjected to affinity chromatography on Sepharose-conjugated lectins (Ricinus communis agglutinins I or II, soybean agglutinin, concanavalin A, or wheat germ agglutinin) and analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Almost all the iodinated proteins bound to one or more of the Sepharose-conjugated lectins, presumptive evidence that these peptides are glycosylated. Lectin affinity chromatography resolved defined subsets of iodinated glycoproteins and suggested that certain glycoproteins could be fractionated on the basis of heterogeneity of their heterosaccharide moieties. Incubation of the iodinated cells with neuraminidase resulted in increased binding of iodinated proteins to Sepharose-conjugated Ricinus communis agglutinins I and II and soybean agglutinin and decreased binding to Sepharose-conjugated wheat germ agglutinin. Binding of iodinated proteins to concanavalin A was unaffected by neuraminidase treatment of the cells. These studies demonstrate the utility of lectins for the multicomponent analysis of plasma membrane proteins.  相似文献   

11.
Purification and characterization of human lysosomal membrane glycoproteins   总被引:24,自引:0,他引:24  
Two human cell lysosomal membrane glycoproteins of approximately 120 kDa, hLAMP-1 and hLAMP-2, were identified by use of monoclonal antibodies prepared against U937 myelomonocytic leukemia cells or blood mononuclear cells. The two glycoproteins were purified by antibody affinity chromatography and each was found to be a major constituent of human spleen cells, representing approximately 0.05% of the total detergent-extractable protein. Both molecules were highly glycosylated, being synthesized as polypeptides of 40 to 45 kDa and cotranslationally modified by the addition of Asn-linked oligosaccharides. NH2-terminal sequence analysis indicated that each was approximately 50% identical to the corresponding mLAMP-1 or mLAMP-2 of mouse cells. Electron microscopic studies of human blood monocytes, HL-60, and U937 cells demonstrated that the principal location of these glycoproteins was intracellular, in vacuoles and lysosomal structures but not in the peroxidase-positive granules of monocytes. Transport of the proteins between organelles was evidenced by their marked accumulation in the membranes of phagolysosomes. A fraction of each glycoprotein was also detected on the plasma membrane of U937 and HL-60 cells but not on a variety of other tissue culture cells. This cell-surface expression may be differentiation related, since the proteins were not detected in the plasma membrane of normal blood monocytes and their expression on U937 and HL-60 cells was reduced when the cells were treated with differentiating agents. Cell-surface expression of both glycoproteins was markedly increased in blood monocytes but not in U937 cells after exposure to the lysosomotropic reagent methylamine HCl, indicating differences in LAMP-associated membrane flow in these cell types.  相似文献   

12.
We demonstrate that HEL, a human erythroleukemic cell line, has numerous megakaryocytic markers which were markedly enhanced following the addition of the inducers dimethyl sulfoxide or 12-O-tetradecanoylphorbol-13-acetate to the culture medium. Ultrastructural and cytochemical studies showed: (i) the presence of organelles morphologically resembling the platelet alpha-granules; and (ii) a peroxidase activity with the same characteristics as that specifically found in platelets. The platelet alpha-granule proteins (von Willebrand factor, platelet factor-4 and beta-thromboglobulin) were immunologically detected in the HEL cell cytoplasm and their amounts increased after induction. Of particular interest was the presence of platelet membrane proteins. A monoclonal antibody specific for glycoprotein Ib bound to HEL cells. Platelet membrane glycoproteins IIb and IIIa were identified on intact cells using specific antibodies in a binding assay or in cell lysates using either crossed immunoelectrophoresis or an immunoblotting procedure following SDS-polyacrylamide gel electrophoresis. Most HEL cells also expressed the platelet alloantigen PIA1. All of the platelet membrane proteins were present in higher amounts after induction. Glycophorin A, specific for the erythroid lineage, was also detected on HEL cells. Thus, while confirming the presence of erythroid markers, our studies provide evidence that the HEL cell line also expresses platelet antigens. As such, HEL cells represent a unique system with which to study the biosynthesis of platelet-specific proteins and glycoproteins.  相似文献   

13.
Among bacterial species demonstrated to have protein O-glycosylation systems, that of Bacteroides fragilis and related species is unique in that extracytoplasmic proteins are glycosylated at serine or threonine residues within the specific three-amino acid motif D(S/T)(A/I/L/M/T/V). This feature allows for computational analysis of the proteome to identify candidate glycoproteins. With the criteria of a signal peptidase I or II cleavage site or a predicted transmembrane-spanning region and the presence of at least one glycosylation motif, we identified 1021 candidate glycoproteins of B. fragilis. In addition to the eight glycoproteins identified previously, we confirmed that another 12 candidate glycoproteins are in fact glycosylated. These included four glycoproteins that are predicted to localize to the inner membrane, a compartment not previously shown to include glycosylated proteins. In addition, we show that four proteins involved in cell division and chromosomal segregation, two of which are encoded by candidate essential genes, are glycosylated. To date, we have not identified any extracytoplasmic proteins containing a glycosylation motif that are not glycosylated. Therefore, based on the list of 1021 candidate glycoproteins, it is likely that hundreds of proteins, comprising more than half of the extracytoplasmic proteins of B. fragilis, are glycosylated. Site-directed mutagenesis of several glycoproteins demonstrated that all are glycosylated at the identified glycosylation motif. By engineering glycosylation motifs into a naturally unglycosylated protein, we are able to bring about site-specific glycosylation at the engineered sites, suggesting that this glycosylation system may have applications for glycoengineering.  相似文献   

14.
Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation. Galectin-1 regulates NiV-F mediated cell fusion at three distinct points, including retarding maturation of nascent NiV-F, reducing NiV-F lateral mobility on the plasma membrane, and directly inhibiting the conformational change in NiV-F required for triggering fusion. Characterization of the NiV-F N-glycome showed that the critical site for galectin-1 inhibition is rich in glycan structures known to bind galectin-1. These studies identify a unique set of mechanisms for regulating pathophysiology of NiV infection at the level of the target cell.  相似文献   

15.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root development. We here present a general mass spectrometry-based proteomic "shave-and-conquer" strategy that specifically targets GPI-APs. Using a combination of biochemical methods, mass spectrometry, and computational sequence analysis we identified six GPI-APs in a Homo sapiens lipid raft-enriched fraction and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date.  相似文献   

16.
Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK- cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1-infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1-infected bovine cells. For gI, a deficiency in N-linked glycosylation of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected or BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes. Immunization of mice with the transfected cells elicited BHV-1-specific virus-neutralizing antibody, thus verifying the antigenic authenticity of the recombinant glycoproteins and the important role of gI and gIII as targets of the immune response to BHV-1 in this murine model system.  相似文献   

17.
The identification of tumor related cell membrane protein targets is important in understanding tumor progression, the development of new diagnostic tools, and potentially for identifying new therapeutic targets. Here we present a novel strategy for identifying proteins that are altered in their expression levels in a diseased cell using cell specific aptamers. Using an intact viable B-cell Burkitt's lymphoma cell line (Ramos cells) as the target, we have selected aptamers that recognize cell membrane proteins with high affinity. Among the selected aptamers that showed different recognition patterns with different cell lines of leukemia, the aptamer TD05 showed binding with Ramos cells. By chemically modifying TD05 to covalently cross-link with its target on Ramos cells to capture and to enrich the target receptors using streptavidin coated magnetic beads followed by mass spectrometry, we were able to identify membrane bound immunoglobin heavy mu chain as the target for TD05 aptamer. Immunoglobin heavy mu chain is a major component of the B-cell antigen receptor, which is expressed in Burkitt's lymphoma cells. This study demonstrates that this two step strategy, the development of high quality aptamer probes and then the identification of their target proteins, can be used to discover new disease related potential markers and thus enhance tumor diagnosis and therapy. The aptamer based strategy will enable effective molecular elucidation of disease related biomarkers and other interesting molecules.  相似文献   

18.
Glycosphingolipid-enriched microdomains (GEM) are membrane entities that concentrate glycosylphosphatiolylinositol(GPI)-anchored, acylated and membrane proteins important for immune receptor signaling. Using rat leukemic cell line RNK-16 we have initiated proteomic studies of microdomains in natural killer (NK) cells. Isolated plasma membranes were treated with Brij 58, or Nonidet-P40, or sodium carbonate. Extracts were separated by sucrose density gradient centrifugation into very light membrane, medium light membrane and heavy fractions, and a complete protein profile was analyzed by tandem mass spectrometry. Up to 250 proteins were unambiguously identified in each analyzed fraction. The first study of the proteome of NK cell GEM revealed several new aspects including identification of molecules not expected to be expressed in rat NK cells (e.g., NAP-22) or associated with GEM (e.g., NKR-P1, CD45, CD2). Moreover, it provided clear data consolidating controversial views concerning the occurrence of major histcompatibility complex glycoproteins and RT6.1/CD73/CD38 complex in NK cells. Our results also identified a large number of receptors as candidates for future functional studies.  相似文献   

19.
Many human inherited disorders cause protein N-glycosylation defects, but there are few cellular markers to test gene complementation for such defects. Plasma membrane glycoproteins are potential biomarkers because they may be reduced or even absent in plasma membranes of glycosylation-deficient cells. We combined stable isotope labeling by amino acids in cell culture (SILAC) with linear ion trap mass spectrometry (LTQ Orbitrap(TM)) to identify and quantify membrane proteins from wild-type CHO and glycosylation-deficient CHO (Lec9) cells. We identified 165 underrepresented proteins from 1447 unique quantified proteins, including 18 N-glycosylated plasma membrane proteins. Using various methods, we found that intercellular cell adhesion molecule 1 (ICAM-1) was reduced in Lec9 cells and in fibroblasts from 31 congenital disorder of glycosylation (CDG) patients compared with normal controls. Mannose supplementation of phosphomannose isomerase-deficient CDG-Ib (MPI-CDG) cells and complementation with PMM2 in PMM2-deficient CDG-Ia (PMM2-CDG) cells partially corrected hypoglycosylation based on increased ICAM-1 presence on the plasma membrane. These data indicate that ICAM-1 could be a useful hypoglycosylation biomarker to assess gene complementation of CDG-I patient cells and to monitor improved glycosylation in response to therapeutic drugs.  相似文献   

20.
We have identified a family of abundant peripheral plasma membrane glycoproteins that is unique to flowering plants. They are identified by a monoclonal antibody, MAC 207, that recognizes an epitope containing L-arabinose and D-glucuronic acid. Immunofluorescence and immunogold labeling studies locate the MAC 207 epitope to the outer surface of the plasma membrane both in protoplasts and in intact tissues. In some cells MAC 207 also binds to the vacuolar membrane, probably reflecting the movement of the plasma membrane glycoproteins in the endocytic pathway. The epitope recognized by MAC 207 is also present on a distinct soluble proteoglycan secreted into the growth medium by carrot (Daucus carota) suspension culture cells. Biochemical evidence identifies this neutral proteoglycan as a member of the large class of arabinogalactan proteins (AGPs), and suggests a structural relationship between it and the plasma membrane glycoproteins. AGPs have the property of binding to beta-glycans, and we therefore propose that one function of the AGP-related, plasma membrane-associated glycoproteins may be to act as cell surface attachment sites for cell wall matrix polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号