共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nik A. B. N. Mahmood Esther Biemans-Oldehinkel Bert Poolman 《The Journal of biological chemistry》2009,284(21):14368-14376
We have previously shown that the C-terminal cystathionine β-synthase
(CBS) domains of the nucleotide-binding domains of the ABC transporter OpuA,
in conjunction with an anionic membrane surface function, act as sensor of
internal ionic strength (Iin). Here, we show that a
surface-exposed cationic region in the CBS module domain is critical for ion
sensing. The consecutive substitution of up to five cationic residues led to a
gradual decrease of the ionic strength dependence of transport. In fact, a
5-fold mutant was essentially independent of salt in the range from 0 to 250
mm KCl (or NaCl), supplemented to medium of 30 mm
potassium phosphate. Importantly, the threshold temperature for transport was
lowered by 5–7 °C and the temperature coefficient
Q10 was lowered from 8 to ∼1.5 in the 5-fold mutant,
indicating that large conformational changes are accompanying the CBS-mediated
regulation of transport. Furthermore, by replacing the anionic C-terminal tail
residues that extend the CBS module with histidines, the transport of OpuA
became pH-dependent, presumably by additional charge interactions of the
histidine residues with the membrane. The pH dependence was not observed at
high ionic strength. Altogether the analyses of the CBS mutants support the
notion that the osmotic regulation of OpuA involves a simple biophysical
switching mechanism, in which nonspecific electrostatic interactions of a
protein module with the membrane are sufficient to lock the transporter in the
inactive state.In their natural habitats microorganisms are often exposed to changes in
the concentration of solutes in the environment
(1). A sudden increase in the
medium osmolality results in loss of water from the cell, loss of turgor, a
decrease in cell volume, and an increase in intracellular osmolyte
concentration. Osmoregulatory transporters such as OpuA in Lactococcus
lactis, ProP in Escherichia coli, and BetP in
Corynebacterium glutamicum diminish the consequences of the osmotic
stress by mediating the uptake of compatible solutes upon an increase in
extracellular osmolality
(2–4).
For the ATP-binding cassette
(ABC)5 transporter
OpuA, it has been shown that the system, reconstituted in proteoliposomes, is
activated by increased concentrations of lumenal ions (increased internal
ionic strength) (2,
5,
6). This activation is
instantaneous both in vivo and in vitro and only requires
threshold levels of ionic osmolytes. Moreover, the ionic threshold for
activation is highly dependent of the ionic lipid content (charge density) of
the membrane and requires the presence of so-called cystathionine
β-synthase (CBS) domains, suggesting that the ionic signal is transduced
to the transporter via critical interactions of the protein with membrane
lipids.The ABC transporter OpuA consists of two identical nucleotide-binding
domains (NBD) fused to CBS domains and two identical substrate-binding domains
fused to transmembrane domains. The NBD-CBS and substrate-binding
domain-transmembrane domain subunits are named OpuAA and OpuABC, respectively.
Two tandem CBS domains are linked to the C-terminal end of the NBD; each
domain (CBS1 and CBS2) has a β-α-β-β-α secondary
structure (5)
(Fig. 1A). The CBS
domains are widely distributed in most if not all species of life but their
function is largely unknown. Most of the CBS domains are found as tandem
repeats but data base searches have also revealed tetra-repeat units
(5). The crystal structures of
several tandem CBS domains have been elucidated
(7–9,
32), and in a number of cases
it has been shown that two tandem CBS domains form dimeric structures with a
total of four CBS domains per structural module (hereafter referred to as CBS
module). The crystal structures of the full-length MgtE Mg2+
transporter confirm the dimeric configuration and show that the CBS domains
undergo large conformational changes upon Mg2+ binding or release
(10,
11). In general, ABC
transporters are functional as dimers, which implies that two tandem CBS
domains are present in the OpuA complex. Preliminary experiments with
disulfides engineered at the interface of two tandem CBS domains in OpuA
suggest that large structural rearrangements (association-dissociation of the
interfaces) play a determining role in the ionic strength-regulated transport.
Finally, a subset of CBS-containing proteins has a C-terminal extension, which
in OpuA is highly anionic (sequence: ADIPDEDEVEEIEKEEENK) and modulates the
ion sensing activity (6).Open in a separate windowFIGURE 1.Domain structure of CBS module of OpuA. A, sequence of
tandem CBS domains. The predicted secondary structure is indicated
above the sequence. The residues modified in this study are
underlined. The amino acid sequence end-points of OpuAΔ61 and
OpuAΔ119 are indicated by vertical arrows. B, homology
model of tandem CBS domain of OpuA. The CBS domains were individually modeled
on the crystal structure of the tandem CBS protein Ta0289 from T.
acidophilum (PDB entry 1PVM), using Phyre. Ta0289 was used for the
initial modeling, because its primary sequence was more similar to the CBS
domains of OpuA than those of the other crystallized CBS proteins. The
individual domain models were then assembled with reference to the atomic
coordinates of the tandem CBS domains of IMPDH from Streptococcus
pyogenes (PDB entry 1ZFJ) to form the tandem CBS pair, using PyMOL
(DeLano). The positions of the (substituted) cationic residues are
indicated.In this study, we have engineered the surface-exposed cationic residues of
the CBS module and the C-terminal anionic tail of OpuA
(Fig. 1B). The ionic
strength and lipid dependence of the OpuA mutants were determined in
vivo and in vitro. We show that substitution of five cationic
residues for neutral amino acids is sufficient to inactivate the ionic
strength sensor and convert OpuA into a constitutively active transporter.
Moreover, by substituting six anionic plus four neutral residues of the
C-terminal anionic tail for histidines, the transport reaction becomes
strongly pH-dependent. 相似文献
3.
Sebastián Carballal Ernesto Cuevasanta Pramod K. Yadav Carmen Gherasim David P. Ballou Beatriz Alvarez Ruma Banerjee 《The Journal of biological chemistry》2016,291(15):8004-8013
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. 相似文献
4.
Human cystathionine β-synthase (CBS) catalyzes the first irreversiblestep in the transsulfuration pathway and commits homocysteine to the synthesisof cysteine. Mutations in CBS are the most common cause of severe hereditaryhyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins thatinteract with CBS had previously identified several components of thesumoylation pathway and resulted in the demonstration that CBS is a substratefor sumoylation. In this study, we demonstrate that sumoylation of CBS isenhanced in the presence of human polycomb group protein 2 (hPc2), aninteracting partner that was identified in the initial yeast two-hybrid screen.When the substrates for CBS, homocysteine and serine for cystathioninegeneration and homocysteine and cysteine for H2S generation, areadded to the sumoylation mixture, they inhibit the sumoylation reaction, butonly in the absence of hPc2. Similarly, the product of the CBS reaction,cystathionine, inhibits sumoylation in the absence of hPc2. Sumoylation in turndecreases CBS activity by ∼28% in the absence of hPc2 and by70% in its presence. Based on these results, we conclude that hPc2serves as a SUMO E3 ligase for CBS, increasing the efficiency of sumoylation. Wealso demonstrate that γ-cystathionase, the second enzyme in thetranssulfuration pathway is a substrate for sumoylation under in vitroconditions. We speculate that the role of this modification may be for nuclearlocalization of the cysteine-generating pathway under conditions where nuclearglutathione demand is high. 相似文献
5.
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology. 相似文献
6.
7.
8.
9.
Yamini S. Bynagari Bela Nagy Jr. Florin Tuluc Kamala Bhavaraju Soochong Kim K. Vinod Vijayan Satya P. Kunapuli 《The Journal of biological chemistry》2009,284(20):13413-13421
The novel class of protein kinase C (nPKC) isoform η is expressed in
platelets, but not much is known about its activation and function. In this
study, we investigated the mechanism of activation and functional implications
of nPKCη using pharmacological and gene knock-out approaches. nPKCη
was phosphorylated (at Thr-512) in a time- and concentration-dependent manner
by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1
receptor antagonist, or YM-254890, a Gq blocker, abolished
2MeSADP-induced phosphorylation of nPKCη. Similarly, ADP failed to
activate nPKCη in platelets isolated from P2Y1 and
Gq knock-out mice. However, pretreatment of platelets with
P2Y12 receptor antagonist, AR-C69331MX did not interfere with
ADP-induced nPKCη phosphorylation. In addition, when platelets were
activated with 2MeSADP under stirring conditions, although nPKCη was
phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by
activated integrin αIIbβ3 mediated outside-in
signaling. Moreover, in the presence of SC-57101, a
αIIbβ3 receptor antagonist, nPKCη
dephosphorylation was inhibited. Furthermore, in murine platelets lacking
PP1cγ, a catalytic subunit of serine/threonine phosphatase,
αIIbβ3 failed to dephosphorylate nPKCη.
Thus, we conclude that ADP activates nPKCη via P2Y1 receptor
and is subsequently dephosphorylated by PP1γ phosphatase activated by
αIIbβ3 integrin. In addition, pretreatment of
platelets with η-RACK antagonistic peptides, a specific inhibitor of
nPKCη, inhibited ADP-induced thromboxane generation. However, these
peptides had no affect on ADP-induced aggregation when thromboxane generation
was blocked. In summary, nPKCη positively regulates agonist-induced
thromboxane generation with no effects on platelet aggregation.Platelets are the key cellular components in maintaining hemostasis
(1). Vascular injury exposes
subendothelial collagen that activates platelets to change shape, secrete
contents of granules, generate thromboxane, and finally aggregate via
activated αIIbβ3 integrin, to prevent further
bleeding (2,
3). ADP is a physiological
agonist of platelets secreted from dense granules and is involved in feedback
activation of platelets and hemostatic plug stabilization
(4). It activates two distinct
G-protein-coupled receptors (GPCRs) on platelets, P2Y1 and
P2Y12, which couple to Gq and Gi,
respectively
(5–8).
Gq activates phospholipase Cβ (PLCβ), which leads to
diacyl glycerol (DAG)2
generation and calcium mobilization
(9,
10). On the other hand,
Gi is involved in inhibition of cAMP levels and PI 3-kinase
activation (4,
6). Synergistic activation of
Gq and Gi proteins leads to the activation of the
fibrinogen receptor integrin αIIbβ3.
Fibrinogen bound to activated integrin αIIbβ3
further initiates feed back signaling (outside-in signaling) in platelets that
contributes to the formation of a stable platelet plug
(11).Protein kinase Cs (PKCs) are serine/threonine kinases known to regulate
various platelet functional responses such as dense granule secretion and
integrin αIIbβ3 activation
(12,
13). Based on their structure
and cofactor requirements, PKCs are divided in to three classes: classical
(cofactors: DAG, Ca2+), novel (cofactors: DAG) and atypical
(cofactors: PIP3) PKC isoforms
(14). All the members of the
novel class of PKC isoforms (nPKC), viz. nPKC isoforms δ, θ,
η, and ε, are expressed in platelets
(15), and they require DAG for
activation. Among all the nPKCs, PKCδ
(15,
16) and PKCθ
(17–19)
are fairly studied in platelets. Whereas nPKCδ is reported to regulate
protease-activated receptor (PAR)-mediated dense granule secretion
(15,
20), nPKCθ is activated
by outside-in signaling and contributes to platelet spreading on fibrinogen
(18). On the other hand, the
mechanism of activation and functional role of nPKCη is not addressed as
yet.PKCs are cytoplasmic enzymes. The enzyme activity of PKCs is modulated via
three mechanisms (14,
21): 1) cofactor binding: upon
cell stimulus, cytoplasmic PKCs mobilize to membrane, bind cofactors such as
DAG, Ca2+, or PIP3, release autoinhibition, and attain an active
conformation exposing catalytic domain of the enzyme. 2) phosphorylations:
3-phosphoinositide-dependent kinase 1 (PDK1) on the membrane phosphorylates
conserved threonine residues on activation loop of catalytic domain; this is
followed by autophosphorylations of serine/threonine residues on turn motif
and hydrophobic region. These series of phosphorylations maintain an active
conformation of the enzyme. 3) RACK binding: PKCs in active conformation bind
receptors for activated C kinases (RACKs) and are lead to various subcellular
locations to access the substrates
(22,
23). Although various leading
laboratories have elucidated the activation of PKCs, the mechanism of
down-regulation of PKCs is not completely understood.The premise of dynamic cell signaling, which involves protein
phosphorylations by kinases and dephosphorylations by phosphatases has gained
immense attention over recent years. PP1, PP2A, PP2B, PHLPP are a few of the
serine/threonine phosphatases reported to date. Among them PP1 and PP2
phosphatases are known to regulate various platelet functional responses
(24,
25). Furthermore, PP1c, is the
catalytic unit of PP1 known to constitutively associate with
αIIb and is activated upon integrin engagement with
fibrinogen and subsequent outside-in signaling
(26). Among various PP1
isoforms, recently PP1γ is shown to positively regulate platelet
functional responses (27).
Thus, in this study we investigated if the above-mentioned phosphatases are
involved in down-regulation of nPKCη. Furthermore, reports from other cell
systems suggest that nPKCη regulates ERK/JNK pathways
(28). In platelets ERK is
known to regulate agonist induced thromboxane generation
(29,
30). Thus, we also
investigated if nPKCη regulates ERK phosphorylation and thereby
agonist-induced platelet functional responses.In this study, we evaluated the activation of nPKCη downstream of ADP
receptors and its inactivation by an integrin-associated phosphatase
PP1γ. We also studied if nPKCη regulates functional responses in
platelets and found that this isoform regulates ADP-induced thromboxane
generation, but not fibrinogen receptor activation in platelets. 相似文献
10.
11.
12.
13.
Christian Rosker Gargi Meur Emily J. A. Taylor Colin W. Taylor 《The Journal of biological chemistry》2009,284(8):5186-5194
Ryanodine receptors (RyR) are Ca2+ channels that mediate
Ca2+ release from intracellular stores in response to diverse
intracellular signals. In RINm5F insulinoma cells, caffeine, and
4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca2+
entry that was independent of store-operated Ca2+ entry, and
blocked by prior incubation with a concentration of ryanodine that inactivates
RyR. Patch-clamp recording identified small numbers of large-conductance
(γK = 169 pS) cation channels that were activated by
caffeine, 4CmC or low concentrations of ryanodine. Similar channels were
detected in rat pancreatic β-cells. In RINm5F cells, the channels were
blocked by cytosolic, but not extracellular, ruthenium red. Subcellular
fractionation showed that type 3 IP3 receptors (IP3R3)
were expressed predominantly in endoplasmic reticulum, whereas RyR2 were
present also in plasma membrane fractions. Using RNAi selectively to reduce
expression of RyR1, RyR2, or IP3R3, we showed that RyR2 mediates
both the Ca2+ entry and the plasma membrane currents evoked by
agonists of RyR. We conclude that small numbers of RyR2 are selectively
expressed in the plasma membrane of RINm5F pancreatic β-cells, where they
mediate Ca2+ entry.Ryanodine receptors
(RyR)3 and inositol
1,4,5-trisphosphate receptors (IP3R)
(1,
2) are the archetypal
intracellular Ca2+ channels. Both are widely expressed, although
RyR are more restricted in their expression than IP3R
(3,
4). In common with many cells,
pancreatic β-cells and insulin-secreting cell lines express both
IP3R (predominantly IP3R3)
(5,
6) and RyR (predominantly RyR2)
(7). Both RyR and
IP3R are expressed mostly within membranes of the endoplasmic (ER),
where they mediate release of Ca2+. Functional RyR are also
expressed in the secretory vesicles
(8,
9) or, and perhaps more likely,
in the endosomes of β-cells
(10). Despite earlier
suggestions (11),
IP3R are probably not present in the secretory vesicles of
β-cells (8,
12,
13).All three subtypes of IP3R are stimulated by IP3 with
Ca2+ (1), and the
three subtypes of RyR are each directly regulated by Ca2+. However,
RyR differ in whether their most important physiological stimulus is
depolarization of the plasma membrane (RyR1), Ca2+ (RyR2) or
additional intracellular messengers like cyclic ADP-ribose. The latter
stimulates both Ca2+ release and insulin secretion in β-cells
(8,
14). The activities of both
families of intracellular Ca2+ channels are also modulated by many
additional signals that act directly or via phosphorylation
(15,
16). Although they commonly
mediate release of Ca2+ from the ER, both IP3R and RyR
select rather poorly between Ca2+ and other cations (permeability
ratio, PCa/PK ∼7)
(1,
17). This may allow
electrogenic Ca2+ release from the ER to be rapidly compensated by
uptake of K+ (18),
and where RyR or IP3R are expressed in other membranes it may allow
them to affect membrane potential.Both Ca2+ entry and release of Ca2+ from
intracellular stores contribute to the oscillatory increases in cytosolic
Ca2+ concentration ([Ca2+]i) that
stimulate exocytosis of insulin-containing vesicles in pancreatic β-cells
(7). Glucose rapidly
equilibrates across the plasma membrane (PM) of β-cells and its oxidative
metabolism by mitochondria increases the cytosolic ATP/ADP ratio, causing
KATP channels to close
(19). This allows an
unidentified leak current to depolarize the PM
(20) and activate
voltage-gated Ca2+ channels, predominantly L-type Ca2+
channels (21). The resulting
Ca2+ entry is amplified by Ca2+-induced Ca2+
release from intracellular stores
(7), triggering exocytotic
release of insulin-containing dense-core vesicles
(22). The importance of this
sequence is clear from the widespread use of sulfonylurea drugs, which close
KATP channels, in the treatment of type 2 diabetes. Ca2+
uptake by mitochondria beneath the PM further stimulates ATP production,
amplifying the initial response to glucose and perhaps thereby contributing to
the sustained phase of insulin release
(23). However, neither the
increase in [Ca2+]i nor the insulin release
evoked by glucose or other nutrients is entirely dependent on Ca2+
entry (7,
24) or closure of
KATP channels (25).
This suggests that glucose metabolism may also more directly activate RyR
(7,
26) and/or IP3R
(27) to cause release of
Ca2+ from intracellular stores. A change in the ATP/ADP ratio is
one means whereby nutrient metabolism may be linked to opening of
intracellular Ca2+ channels because both RyR
(28) and IP3R
(1) are stimulated by ATP.The other major physiological regulators of insulin release are the
incretins: glucagon-like peptide-1 and glucose-dependent insulinotropic
hormone (29). These hormones,
released by cells in the small intestine, stimulate synthesis of cAMP in
β-cells and thereby potentiate glucose-evoked insulin release
(30). These pathways are also
targets of drugs used successfully to treat type 2 diabetes
(29). The responses of
β-cells to cAMP involve both cAMP-dependent protein kinase and epacs
(exchange factors activated by cAMP)
(31,
32). The effects of the latter
are, at least partly, due to release of Ca2+ from intracellular
stores via RyR
(33–35)
and perhaps also via IP3R
(36). The interplays between
Ca2+ and cAMP signaling generate oscillatory changes in the
concentrations of both messengers
(37). RyR and IP3R
are thus implicated in mediating responses to each of the major physiological
regulators of insulin secretion: glucose and incretins.Here we report that in addition to expression in intracellular stores,
which probably include both the ER and secretory vesicles and/or endosomes,
functional RyR2 are also expressed in small numbers in the PM of RINm5F
insulinoma cells and rat pancreatic β-cells. 相似文献
14.
15.
Taurai Chiku Dominique Padovani Weidong Zhu Sangita Singh Victor Vitvitsky Ruma Banerjee 《The Journal of biological chemistry》2009,284(17):11601-11612
16.
17.
Pushchina E. V. Varaksin A. A. Obukhov D. K. 《Russian Journal of Developmental Biology》2019,50(2):39-58
Russian Journal of Developmental Biology - Expression of cystathionine β-synthase (CBS) in the brain of adult trout under normal conditions and 1 week after an eye injury was assessed using... 相似文献
18.
Benjamin S. Rutledge Wing-Yiu Choy Martin L. Duennwald 《The Journal of biological chemistry》2022,298(5)
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers. 相似文献
19.
20.
Alexandre B. Hardy Jocelyn E. Manning Fox Pejman Raeisi Giglou Nadeeja Wijesekara Alpana Bhattacharjee Sobia Sultan Armen V. Gyulkhandanyan Herbert Y. Gaisano Patrick E. MacDonald Michael B. Wheeler 《The Journal of biological chemistry》2009,284(44):30441-30452
Voltage-gated eag-related gene (Erg) K+ channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in α-TC6 and Min6 cells α- and β-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in α- and β-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca2+-imaging experiments were performed on isolated α- and β-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca2+ increase in both α- and β-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of α- and β-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion.Voltage-gated eag-related gene (Erg)2 potassium (K+) channels are part of the larger family of voltage dependent K+ (Kv) channels (1). Three channel isoforms Erg1, Erg2, and Erg3 have been discovered (2, 3), and they differ by their activation and inactivation voltage dependence, gating properties, and pharmacological profile (4–7). Erg channels control cellular activity by controlling the repolarization of the action potential (AP). In atrial cells and ventricular myocytes, Erg regulates plateau formation and AP repolarization, as blocking Erg channels increases AP length (8, 9). These channels are also strongly involved in the pacemaking activity of cardiac cells (10, 11). Interestingly, a rare congenital heart condition, the inherited form of long QT syndrome is caused by mutations of Erg channel genes (9, 12). Erg channels also control the resting membrane potential in various cell types. For example, in neurons of the medial vestibular nucleus, blocking Erg channels produce an increase in AP discharge or in smooth muscle cells, blocking Erg channels mediates depolarization up to 20 mV (13–15). Hormone secretion studies also demonstrated the involvement of Erg channels in the secretion of prolactin from neurons of the anterior pituitary. Thyrotropin-releasing factor decreases Erg current, which depolarizes neurons and thereby stimulates prolactin secretion (16, 17).In the pancreas, Kv channels and more specifically Kv2.1, regulate insulin secretion by controlling the repolarization of β-cell membrane potential (18–20), although the contribution of this isoform in humans has recently been questioned (21). In α-cells, Kv2.1 and Kv1.4 channels repolarize the membrane potential (22, 23); however, the involvement of Kv channels in the secretion of glucagon is yet to be investigated. One study showed that Erg1, -2, and -3 are expressed in rat α- and β-cells and the rat insulinoma cell line, INS-1, and that they are involved in decreasing membrane potential. Blocking Erg channels with the channel antagonist E4031 increases insulin secretion from INS1 cells (24); however, definitive data regarding the role of Erg channels in insulin and glucagon secretion is limited.Therefore this study aimed to define the functions of Erg channels in α- and β-cells. We found that Erg1 channels are strongly expressed in pancreatic α- and β-cells. Pharmacological and genetic manipulation combined with whole cell recordings in pancreatic cell lines and primary islet cells determined that Erg1 produces a functional current in α- and β-cells. Blocking Erg1 increased intracellular calcium ([Ca2+]i) in mouse β-cells, but only in a minority of mouse and human α-cells. Secretion studies using isolated mouse islets demonstrated that Erg1 are negative regulators of insulin secretion, but positive regulators of glucagon secretion, suggesting distinct roles for Erg1 in β- and α-cells. 相似文献